
Solutions to Homework 5 - Markov Chains

1) Stationary distribution. Consider a Markov chain (MC)X N = X 0; X 1; : : : ; X n ; : : : with state spaceS = f 1; 2g
and transition probability matrix

P =
�

1=4 3=4
1=5 4=5

�
:

To obtain the stationary distribution� = [ � 1; � 2

lim
n !1

Pn
22 = � 2 =

15

19
:

Finally, by virtue of the ergodic theorem the time averagelimn !1
1
n

P n � 1
k=0 I f X k = 1g also converges. The long-

run fraction of time the MC visits state1 is thus given by

lim
n !1

1
n

n � 1X

k=0

I f X k = 1g = � 1 =
4
19

:

2) A cloudy town. A certain town never has two sunny days in a row. Each day is classi�ed as being either sunny,
cloudy (but dry), or rainy. If it is sunny one day, then it is equally likely to be either cloudy or rainy the next day.
If it is rainy or cloudy one day, then there is one chance in two that it will be the same the next day, and if it
changes then it is equally likely to be either of the other two possibilities.

Let X N = X 0; X 1; : : : ; X n ; : : : be the random process describing the weather evolution of the given town, with
n denoting the day number. Given the nature of the evolution of the process (meaning the weather today only



Customers who do not �nd the product in stock depart without making a purchase. The store ordersq > 0 new
units of the product from its supplier at the end of the day (after that day's demand has materialized). However,
the supplier is not completely reliable, and each day, with probability� independent of everything else, the order
is permanently lost in which case the order does not arrive to the store. If the order is not lost, it arrives to the



Now, what is left is to carefully put all pieces (2)-(6) together back in (1). For alli � 0, the transition probabilities
are thus given by

Pi 0 = �
1X

k= i

p(k);

Pij =
�

�p (i � j ); i � j
0; i < j

; for 0 < j < q;

Piq =
�

�p (i � q) + (1 � � )
P 1

k= i p(k); i � q
(1 � � )

P 1
k= i p(k); i < q

;

Pij =

8
<

:

�p (i � j ) + (1 � � )p(i � j + q); i � j � 0
(1 � � )p(i � j + q); i � j + q � 0; i � j < 0

0; i � j + q < 0
; for j > q:

4) Non-invertible function of a Markov chain. Suppose thatX N = X 0; X 1; : : : ; X n ; : : : is a MC with state space
S = f 1; 2; 3g, transition probability matrix

P =

0

@
0 2=3 1=3

1=4 1=4 1=2
3=4 1=4 0

1

A

and initial distribution P[X 0 = 1] = 1 =5, P[X 0 = 2] = 2 =5 and P[X 0 = 3] = 2 =5. Suppose that the random
processYN = Y0; Y1; : : : ; Yn ; : : : satis�es Yn = g(X n ), n � 0, whereg(1) = 1 andg(2) = g(3) = 2 .

To calculate P
�
Y2 = 1

�
� Y1 = 2 ; Y0 = 1

�
, one can resort to the de�nition of conditional probability and write

P
�
Y2 = 1

�
� Y1 = 2 ; Y0 = 1

�
=

P[Y2 = 1 ; Y1 = 2 ; Y0 = 1]
P[Y1 = 2 ; Y0 = 1]

=
P[X 2 = 1 ; X 1 2 f 2; 3g; X 0 = 1]

P[X 1 2 f 2; 3g; X 0 = 1]

=
P[X 2 = 1 ; X 1 = 2 ; X 0 = 1] + P[X 2 = 1 ; X 1 = 3 ; X 0 = 1]

P[X 1 = 2 ; X 0 = 1] + P[X 1 = 3 ; X 0 = 1]

=
P[X 0 = 1] P12P21 + P[X 0 = 1] P13P31

P[X 0 = 1] P12 + P[X 0 = 1] P13
=

5
12

:

Because the functiong is not invertible, it turns out thatYN is not Markov chain. Actually, one can verify that

P
�
Y2 = 1

�
� Y1 = 2 ; Y0 = 1

�
6= P

�
Y2 = 1

�
� Y1 = 2

�
=

17
36

:

5) A non-irreducible Markov chain. Consider a MCX N = X 0; X 1; : : : ; X n ; : : : with state spaceS = f 1; 2; 3g
and transition probability matrix

P =

0

@
1=3 1=6 1=2
0 1 0
0 0 1

1

A :

A) The = 2f12, transition= 3f12= 3f1g



Fig. 1. State transition diagram for the MC with transition probability matrixP. The MC has three communication classes.

Because state1 is transient, one hasP1
11 = 0 . To computeP1

12 andP1
13 , introduce the matrix of limiting probabilities

P 1 =

0

@
0 P1

12 P1
13

0 1 0
0 0 1

1

A

that must be a �xed point of the recursionP n = P � P n � 1, implying P 1 = P � P 1 . This identity gives the
equations required to determineP1

12 andP1
13 , which yield

P1
12

3
+

1
6

= P1
12 ) P1

12 =
1
4

P1
13

3
+

1
2

= P1
13 ) P1

13 =
3
4

:

All in all, the matrix of limiting probabilities is

P 1 =

0

@
0 1=4 3=4
0 1 0
0 0 1

1

A :

C) The matrix of limiting probabilitiesP 1 suggests the following three stationary distributions

� 1 = [0 ; 1=4; 3=4]T ; � 2 = [0 ; 1; 0]T ; � 3 = [0 ; 0; 1]T :

It is straightforward to check that� i = P T � i , for eachi = 1 ; : : : ; 3.

D) From the �rst row of P 1 , one can claim that givenX 0 = 1 the MC will end up in state2 (and stay there
forever) with probability1=4, or else end up in state3 (and stay there forever) with probability3=4. This observation
immediately leads to the conclusion that

lim
n !1

1
n

n � 1X

k=0

I f X k = 2g

will almost surely converge to a random variableY that is Bernoulli distributed with parameter1=4.

6) A null-recurrent Markov chain. Consider a MC with state spaceS = f 1; 2; : : :g and transition probabilities
Pi;i +1 = i=(i + 1) andPi 1 = 1=(i + 1) for i = 1 ; 2; : : :. The transition probability matrix is

P =

0

B
B
B
B
@

1=2 1=2 0 0 0 : : :
1=3 0 2=3 0 0 : : :

1=4 0 0 3=4 0
...

...
...

...
...

...
...

1

C
C
C
C
A

:



Class 

Fig. 2. State transition diagram for the MC with transition probability matrixP. The MC has three communication classes.

The state transition diagram is depicted in Fig. 2, from where it is apparent that state1 is accessible from all other
states (via single-step transitions). Moreover, all other states are clearly accessible from state1. This shows that all
states communicate and form a single (in�nitely large) class, so the MC is irreducible.

The goal is to establish the recurrence properties of the MC. Because the MC is irreducible and recurrence is a
class property, it suf�ces to analyze the recurrence properties of a single state, say state1. To that end, de�ne the
return timeT1 to state1 as

T1 = min f n > 0 j X n = 1g

State 1 (and hence the MC) will be recurrent if P
�
T1 < 1

�
� X 0 = 1

�
= 1 , which is of course equivalent to

P
�
T1 = 1

�
� X 0 = 1

�
= 0 . As it can be readily seen from the state transition diagram, the probability that the MC

never returns to state1 given that it started in that state is given by

P
�
T1 = 1

�
� X 0 = 1

�
= P12 � P23 � P34 � : : : � Pi;i +1 � : : :

= lim
n !1

nY

i =1

Pi;i +1 = lim
n !1

nY

i =1

i
i + 1

= lim
n !1

1
n + 1

= 0 :

In obtaining the second last inequality we have used the fact that terms in successive products of probabilities cancel
out, and only the numerator from the �rst and denominator from the last probability survive. This establishes that
the MC is recurrent as desired.

To further show that it is null recurrent, it suf�ces to focus on �rst state and verify thatE
�
T1

�
� X 0 = 1

�
= 1 .

Recalling the de�nition ofT1, one can obtain the relevant conditional pmf

P[T1 = njX 0 = 1] =

8
>>>>>>>><

>>>>>>>>:

P11; n = 1
P12 � P21; n = 2

P12 � P23 � P31; n = 3
...;

...
P12 � P23 � : : : � Pi � 1;i � Pi 1; n = i

...;
...

whose general term can be simpli�ed as

P
�
T1 = n

�
� X 0 = 1

�
=

 
n � 1Y

i =1

Pi;i +1

!

Pn 1 =

 
n � 1Y

i =1

i
i + 1

!
1

n + 1
=

1
n(n + 1)

:

The conditional expectation is from the de�nition

E
�
T1

�
� X 0 = 1

�
=

1X

n =1

n � P
�
T1 = n

�
� X 0 = 1

�
=

1X

n =1

n �
1

n(n + 1)
=

1X

n =1

1
n + 1

= 1 :

The in�nite sum diverges, establishing that state1 (hence, the MC) is null-recurrent as desired.



k k+1k� 10

�

pq pq

��
1 � �

pq

1 � � � pq
1 � � � pq1 � � � pq

: : : : : :



TABLE I
SUMMARY OF THE RECURRENCE ANALYSIS. RECURRENCE DEPENDS ON THE PARAMETERS� AND pq.

Parameters Effect on recurrence
� = 0, pq = 0 Every state is a class. Every class is positive recurrent.
� = 0, pq > 0 Every state is a class. Class 0 is positive recurrent. All other classes are transient.
� > 0, pq = 0 Every state is a class. Every class is transient.
� > pq > 0 The MC is irreducible and transient.
pq > � > 0 ys





which is true forjxj < 1 and that we used in (20). After differentiating both sides of (28) and multiplying both of
them byx, we obtain

1X

k=0

kxk =
x

(1 � x)2 : (29)

By using (29) forx = �=pq , we can evaluate the expected value expression in (27), to obtain

lim
n !1

E[Qjn ] =
�

1 �
�
pq

�
�=pq

�
1 � �

pq

� 2 =
�=pq

�
1 � �

pq

� =
�

(pq� � )
: (30)

Notice that the expression obtained in (30) for the expected queue length is quite intuitive. The expected length
grows with increasing arrival rate� and decreases when the difference between the successful transmission ratepq
and the arrival rate� increases.

E) Probability of successful transmission and optimal transmission probability p. So far, we have assumed that the
probability q that a transmission by an arbitrary terminalj does not experience a collision with any other terminal
is given. However, under the dominant system assumption (B), for a transmitted packet not to collide it must be
that none of the remainingJ � 1 transmitted any packet. Since every terminal acts independently, we may write

q = (1 � p)J � 1 : (31)

This allows us to compute the probabilityp that maximizes the probability of successful transmissionpq. In order
to do this, we differentiatepq with respect top and look for the roots of the corresponding equation, i.e.

d
d p

[pq] =
d

d p

h
p(1 � p)J � 1

i
= (1 � p)J � 1 � (J � 1)p(1 � p)J � 2 = 0 : (32)

Since we obviously assumep < 1 because otherwise the probability of successful transmission is trivially null, we
may divide (32) by(1 � p)J � 2 to obtain a linear expression that yields the optimal probability

p� =
1
J

: (33)

Since the probability of the queue being empty is an increasing function ofpq [cf. (22)] and the expected queue
length is a decreasing function ofpq [cf. (30)], the optimal probabilityp� in (33) entails simultaneously shorter
queues and higher probabilities of these queues being empty. Moreover, for thisp� , the probability of no collision
becomes [cf. (31)]

q� =
�

1 �
1
J

� J � 1

: (34)

If we consider a system with many terminals, we may estimate the probability of no collision as the limit ofq�

whenJ tends to in�nity, i.e.,

lim
J !1

q� = lim
J !1

�
1 �

1
J

� J � 1

= lim
J !1

�
1 �

1
J

� J �
1 �

1
J

�
=

1
e

� 0:368: (35)

The above result implies that RA communications utilizes approximately37%of the available access point resources
without any coordination overhead among terminals.

F) Average time occupancies. It is possible to argue that the limit probabilities in (21) as well as the performance
indicators in (22)-(24), and (27) are of little practical value. What these probabilities express is an average across
all possible paths of the communication system. Say we run the system once and obtain a certain pathQ(1)

jn





Fig. 4. Evolution of the �rst four queues over the �rst 1000 time slots. Queue 3 achieves a maximum queue length of seven packets. Every
other queue length remained under this value.

these probabilities cannot be computed in closed form. However, we may use our simulation results to estimate the
probability distribution function in (38). Moreover, since the MC is ergodic, we may compute the probabilities in
(38) as the time averages over a single simulation run, that is

� k �
1
N

NX

n =1

I f Rjn = kg; for all k; (39)

and for largeN . The Matlab script to generate the requested plot follows:

clear all; close all; clc;

J=16;
p=1/J;
N=10�5;
lambda=0.9*p*(1-p)�(J-1);

x = aloha_uplink_simulation(J,p,lambda,N);

Q1=max(x(1,:));
frequencies=zeros(1,Q1+1);
for i=0:Q1

frequencies(1,i+1)=sum(x(1,:)==i);
end

rho=lambda/(p*(1-p)�(J-1));

A=[frequencies/N;(1-rho)*(rho.�(0:Q1))];
A=A’;
figure




