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Graphs
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I Graph ) A set of V of vertices or nodesj = 1 ; : : : ; J
) Connected by a set of edgesE de�ned as ordered pairs (i ; j )

I In �gure ) Nodes areV = f 1; 2; 3; 4; 5; 6g
) EdgesE = f (1; 2); (1; 5);(2; 3); (2; 5); (3; 4); :::

(3; 6); (4; 5); (4; 6); (5; 4)



How well connected nodes are?
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Connectivity ranking

I Key insight: There is information in the structure of the network
I Knowledge is distributed through the network

) The network (not the nodes) knows the rankings

I Idea exploited by Google's PageRankc
 to rank webpages

... by social scientists to study trust & reputation in social networks

... by ISI to rank scienti�c papers, transactions & magazines ...

1



Preliminary de�nitions

I GraphG = ( V ; E) ) verticesV = f 1; 2; : : : ; Jg and edgesE
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De�nition of rank

I Agent A chooses nodei , e.g., web page, at random for initial visit

I Next visit randomly chosen between links in the neighborhoodn(i )

) All neighbors chosen with



Equiprobable random walk

I Formally, letAn be the node visited at timen

I De�ne transition probabilityPij from nodei into nodej

Pij := P
�
An+1 = j

�
� An = i

�

I Next visit equiprobable amongi 's's



Formal de�nition of rank

I Def: Rank ri of i -th node is the time average of number of visits

ri := lim
n!1

1
n

nX

m=1

I f Am = ig

) De�ne vector of ranksr := [ r1; r2; : : : ; rJ ]T

I Rankri can be approximated by averagerni at time n

rni :=
1
n

nX

m=1

I f Am = ig

) Since lim
n!1

rni = ri , it holds rni � ri for n su�ciently large

) De�ne vector of approximate ranksrn := [ rn1; rn2; : : : ; rnJ ]T

I If modi�ed graph is connected, rank independent of initial visit
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Ranking algorithm

Output : Vector r(i ) with ranking of nodei
Input : Scalarn indicating maximum number of iterations
Input : Vector N(i ) containing number of neighbors ofi
Input : Matrix N(i ; j ) containing indicesj of neighbors ofi

m = 1; r=zeros(J,1); % Initialize time and ranks
A0 = random(`unid',J); % Draw �rst visit uniformly at random
while m < n do

jump = random(`unid',NAm� 1); % Neighbor uniformly at random
Am = N(Am� 1, jump); % Jump to selected neighbor
r(Am) = r(Am) + 1; % Update ranking forAm

m = m + 1;
end
r = r=n; % Normalize by number of iterationsn
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Ranked class graph

Aarti Kochhar
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Convergence metrics

I Recallr is vector of ranks andrn of rank iterates

I By de�nition lim
n!1

rn = r . How fast rn converges tor (r given)?

I Can measure bỳ2 distance betweenr and rn

� n := kr � rnk2 =
� JX

i =1

(rni � ri )2
� 1=2

I If interest is only on highest ranked nodes, e.g., a web search

) Denoter (i ) as the index of thei -th highest ranked node

) Let r (i )
n be the index of thei -th highest ranked node at timen

I First element wr]TJ/F28 9.k Td at fgb lI



Evaluation of convergence metrics

Distance

First element wrongly ranked

0 1000 2000 3000 4000 5000 6000 7000

I Distance close to 10� 2 in
� 5 � 103 iterations

I Bad: Two highest ranks
in � 4 � 103 iterations

I Awful: Six best ranks in
� 8 � 103 iterations

I (Very) slow convergence
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When does this algorithm converge?
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