
























































Mean and variance of biased steps

I De�ne step RVYn = � 1, with probabilities

P (Yn = 1) =
1
2

�
1 +

�
�

p
h
�

; P (Yn = � 1) =
1
2

�
1 �

�



Central Limit Theorem ash ! 0

I Consider timeT = Nh, indexn = 1 ; 2; : : : ; N. Write X (nh) as

X (nh) = X ((n � 1)h) +
�

�
p

h
�

Yn

I Use recursively to writeX (T ) = X(Nh) as

X (T ) = X (Nh) = X (0) +
�

�
p

h
� NX

n=1

Yn =
�

�
p

h
� NX

n=1

Yn

I As h ! 0 we haveN ! 1 and
P N

n=1 Yn normally distributed

I As h ! 0, X (T ) tends to be normally distributed by CLT
I Need to determine mean and variance(and only mean and variance)

Introduction to Random Processes Gaussian, Markov and stationary processes 30



Mean and variance ofX(T )

I Expected value ofX (T ) = scaled sum ofE [Yn] (recall T = Nh)

E [X (T )] =
�

�
p

h
�

� N � E [Yn] =
�

�
p

h
�

� N �
� �

�

p
h
�

= � T

I Variance ofX (T ) = scaled sum of variances of independentYn

var [X (T )] =
�

�
p

h
� 2

� N � var [Yn]

=
�
� 2h

�
� N �

�
1 �

� 2

� 2 h
�

! � 2T

) UsedT = Nh and 1� (� 2=� 2)h ! 1

I Brownian motion with drift (BMD) ) X (t ) � N
�
� t ; � 2t

�

) Normal with mean� t and variance� 2t

) Independent and stationary increments
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Geometric random walk

I Suppose next state follows bymultiplying current by a random factor

) Compare with adding or subtracting a random quantity

I De�ne RV Yn = � 1 with probabilities as in biased random walk

P (Yn = 1) =
1
2

�
1 +

�
�

p
h
�

; P (Yn = � 1) =
1
2

�
1 �

�
�

p
h
�

I Def: The geometric random walkfollows the recursion

Z (nh) = Z ((n � 1)h)e
�

�
p

h
�

Yn

) When Yn = 1 increaseZ(nh) by relativeamount e
�

�
p

h
�

) When Yn = � 1 decreaseZ(nh) by relativeamount e�
�

�
p

h
�

I Notice e�
�

�
p

h
�

� 1 �
�

�
p

h
�

) Useful to model investment return
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Geometric Brownian motion

I Take logarithms on both sides of recursive de�nition

log
�

Z(nh)
�

= log
�

Z((n � 1)h)
�

+
�

�
p

h
�

Yn

I De�ne X(nh) = log
�

Z(nh)
�

, thus recursion forX (nh) is

X (nh) = X((n � 1)h) +
�

�
p

h
�

Yn

) As h ! 0, X (t ) becomes BMD with parameters� and � 2

I Def: Given a BMDX(t ) with parameters� and � 2, the processZ(t )

Z(t ) = eX (t )

is a geometric Brownian motion (GBM)with parameters� and � 2
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White Gaussian noise

Introduction and roadmap

Gaussian processes

Brownian motion and its variants

White Gaussian noise
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Dirac delta function

I Consider a function� h(t ) de�ned as

� h(t ) =
�

1=h if � h=2 � t � h=2
0 else

I \De�ne" delta function as limit of � h(t ) as h ! 0

� (t ) = lim





Heaviside's step function and delta function

I Integral of delta function between�1 and t

Z t

�1
� (u) du =

�
0 if t < 0
1 if t > 0

�
:= H(t )

) H(t ) is called Heaviside's step function

I De�ne the derivative of Heaviside's step function as

@H(t )
@t

= � (t )

) Maintains consistency of fundamental theorem of calculus

t

� (t )H(t )
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Properties of white Gaussian noise

I For di�erent times t1 and t2, W (t1) and W (t2) are uncorrelated

E [W (t1)W (t2)] = RW (t1; t2) = 0 ; t1 6= t2

I But sinceW (t ) is Gaussian uncorrelatedness implies independence

) Values ofW (t ) at di�erent times are independent

I WGN has in�nite power ) E
�
W 2(t )

�
= RW (t ; t ) = � 2� (0) = 1

) WGN does not represent any physical phenomena

I However WGN is a convenient abstraction
I Approximates processes with large power and� independent samples

I Some processes can be modeled as post-processing of WGN

) Cannot observe WGN directly

) But can model its e�ect on systems, e.g., �lters
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Mean-square derivative of a random process

I Consider a realizationx(t ) of the random processX(t )

I Def: The derivative of (lowercase)x(t ) is

@x(t )
@t

= lim
h! 0

x(t + h) � x(t )
h

I When this limit exists ) Limit may not exist for all realizations

I Can de�ne sure limit, a.s. limit, in probability, . . .

) Notion of convergence used here is in mean-squared sense

I Def: Process@X(t )=@t is the mean-square sense derivative ofX (t ) if

lim
h! 0

E

" �
X (t + h) � X (t )

h
�

@X(t )
@t

� 2
#

= 0
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Mean-square integral of a random process

I Likewise consider the integral of a realizationx(t ) of X (t )

Z b

a
x(t )dt = lim

h! 0

(b� a)=hX

n=1

hx(a + nh)

) Limit need not exist for all realizations

I Can de�ne in sure sense, almost sure sense, in probability sense, . . .

) Again, adopt de�nition in mean-square sense

I Def: Process
Rb

a X(t )dt is the mean square sense integral ofX (t ) if

lim
h! 0

E

2

4
� (b� a)=hX

n=1

hX(








	
	
	
	

