



















































































Mean and variance of biased steps

I Dene step RVY, = 1, with probabilities

P(Yn=1)= % 1+7pﬁ i P(Yn= 1):% 1



Central Limit Theorem ak! 0

I Consider timeT = Nh, indexn=1;2;:::;N. Write X(nh) as

X(nh)= X((n 1)h)+ pﬁ Yn
I Use recursively to writX (T ) = X(Nh) as

o _
X(T)= X(N) = X©)+ ©"h ~ Yo= h  Ya

n=1 n=1

P
I Ash! OwehaveN!1l and ,’:':l Yn normally distributed

I Ash! 0, X(T) tends to be normally distributed by CLT
' Need to determine mean and variancg@and only mean and variance)



Mean and variance of(T)

I Expected value oK (T) = scaled sum ofE[Y,] (recall T = Nh)

Py

EX(TY= "h N EM]= "R N -

I Variance ofX(T) = scaled sum of variances of independevi

p_ 2
var[X(T)] = h N var[Y,]

2

= ?h N 1—2h!2T

) UsedT = Nhand1 ( 2= ?h! 1

I Brownian motion with drift(BMD) ) X(t) N t; 2t
) Normal with mean t and variance 2t
) Independent and stationary increments



Geometric random walk

I Suppose next state follows byultiplying current by a random factor
) Compare with adding or subtracting a random quantity

I Dene RVY,= 1 with probabilities as in biased random walk
P(Ya=D= 3 1+ -"h i P(Ya= D=3 1 -'h

I Def: The geometric random walKollows the recursion

Z(nh)= zZ(n 1)h)e "R

p—
) WhenY, =1 increaseZ(nh) by relative amounte

) WhenY, = 1 decreas& (nh) by relativeamounte

P p_
I Noticee n 1 h ) Useful to model investment return



Geometric Brownian motion

I Take logarithms on both sides of recursive de nition

log Z(nh) =log Z((n 1)h) + pﬁ Yn

I Dene X(nh)=log Z(nh) , thus recursion foiX (nh) is

X(nh)= X((n 1)h)+ pﬁ ‘A
) Ash! 0, X(t) becomes BMD with parameters and 2
I Def: Given a BMDX(t) with parameters and 2, the proces<Z(t)
Z(t)= &M

is ageometric Brownian motion (GBMwith parameters and 2



White Gaussian noise

Introduction and roadmap
Gaussian processes
Brownian motion and its variants

White Gaussian noise



Dirac delta function

I Consider a functiony(t) de ned as

_ 1=h if h=2 t h=2
M= 5 else

I \De ne" delta function as limit of (t) ash! 0

(t) = lim






Heaviside's step function and delta function

I Integral of delta function betweerl andt

z
! 0 ift<o0
(Wdu=

. 1 ift>o0 — 1O
) H(t) is called Heaviside's step function

I De ne the derivative of Heaviside's step function as

R

) Maintains consistency of fundamental theorem of calculus

H(t) 4 (1)

A







Properties of white Gaussian noise

I For di erent timest; andt,, W (t;) and W (t,) are uncorrelated
E[W (t)W(t2)] = Rw(t1;t2) =0; t1 6t
I But sinceW (t) is Gaussian uncorrelatedness implies independence
) Values ofW (t) at di erent times are independent

I 'WGN has in nite power) E W?2(t) = Ry (t;t)= 2 (0)=1
) WGN does not represent any physical phenomena

I However WGN is a convenient abstraction
I Approximates processes with large power and independent samples

I Some processes can be modeled as post-processing of WGN
) Cannot observe WGN directly
) But can model its e ect on systems, e.g., Iters












Mean-square derivative of a random process

I Consider a realizatiom(t) of the random procesX(t)

I Def: The derivative of (lowercasej(t) is

@(t) _ . x(t+h)  x(t)
@ lr!!mo h

I When this limit exists) Limit may not exist for all realizations

I Can de ne sure limit, a.s. limit, in probability, . ..
) Notion of convergence used here is in mean-squared sense

I Def: Process@X (t)=@ is the mean-square sense derivativeXft) if
" #
X(t+h) X(t) @X(t) ? 0o
h @ -

limE
h 0



Mean-square integral of a random process

I Likewise consider the integral of a realizatiat) of X (t)

Zy (bya)=h
x(t)dt = u|m0 hx(a+ nh)

a n=1
) Limit need not exist for all realizations

I Can de ne in sure sense, almost sure sense, in probability sense, ...
) Again, adopt de nition in mean-square sense

R
I Def: Process :X(t)dt is the mean square sense integral ¥{t) if
(by@)=h
limE4 hX (
h! 0
n=1












	
	
	
	

