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1. Introduction

Consider the directed graph whose nodes corre-
spond to static pages on the Web, and whose arcs
correspond to links between these pages. We study
various properties of this graph including its diame-
ter, degree distributions, connected components, and
macroscopic structure. There are several reasons for
developing an understanding of this graph.
(1) Designing crawl strategies on the Web [15].
(2) Understanding of the sociology of content cre-

ation on the Web.
(3) Analyzing the behavior of Web algorithms that

make use of link information [9–11,20,26]. To
take just one example, what can be said of the
distribution and evolution of PageRank [9] val-
ues on graphs like the Web?

Ł
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that a node has in-degree i is proportional to 1=i x ,
for some x > 1.
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1.2.1. Zipf–Pareto–Yule and power laws
Distributions with an inverse polynomial tail have

been observed in a number of contexts. The earliest
observations are due to Pareto [27] in the context
of economic models. Subsequently, these statistical
behaviors have been observed in the context of lit-
erary vocabulary [32], sociological models [33], and
even oligonucleotide sequences [24] among others.
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ing several hundred million nodes, and a few billion
arcs. We will refer to this graph as the Web graph,
and our goal in this paper is to understand some of its
properties. Before presenting our model for Web-like
graphs, we begin with a brief primer on graph theory,
and a discussion of graph models in general.

1.3. A brief primer on graphs and terminology

The reader familiar with basic notions from graph
theory may skip this primer.

A directed graph consists of a set of nodes, de-
noted V and a set of arcs, denoted E . Each arc is an
ordered pair of nodes (u; v) representing a directed
connection from u to v. The out-degree of a node u
is the number of distinct arcs .u; v1/: : :.u; vk/ (i.e.,
the number of links from u), and the in-degree is
the number of distinct arcs .v1; u/: : :.vk; u/ (i.e., the
number of links to u). A path from node u to node
v is a sequence of arcs .u; u1/; .u1; u2/; : : :.uk; v/.
One can follow such a sequence of arcs to ‘walk’
through the graph from u to v. Note that a path
from u to v does not imply a path from v to u. The
distance from u to v is one more than the smallest
k for which such a path exists. If no path exists, the
distance from u to v is defined to be infinity. If (u; v)
is an arc, then the distance from u to v is 1.

Given a directed graph, a strongly connected com-
ponent (strong component for brevity) of this graph
is a set of nodes such that for any pair of nodes u and
v in the set there is a path from u to v. In general, a
directed graph may have one or many strong compo-
nents. The strong components of a graph consist of
disjoint sets of nodes. One focus of our studies will
be in understanding the distribution of the sizes of
strong components on the Web graph.

An undirected graph consists of a set of nodes
and a set of edges, each of which is an unordered
pair fu; vg of nodes. In our context, we say there is
an edge between u and v if there is a link between
u and v, without regard to whether the link points
from u to v or the other way around. The degree of a
node u is the number of edges incident to u. A path
is defined as for directed graphs, except that now the
existence of a path from u to v implies a path from
v to u. A component of an undirected graph is a set
of nodes such that for any pair of nodes u and v in
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2. Experiments and results

2.1. Infrastructure

All experiments were run using the Connectivity
Server 2 (CS2) software built at Compaq Systems
Research Center using data provided by AltaVista.
CS2 provides fast access to linkage information on
the Web. A build of CS2 takes a Web crawl as input
and creates a representation of the entire Web graph
induced by the pages in the crawl, in the form of a
database that consists of all URLs that were crawled
together with all in-links and out-links among those
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Fig. 5. Distribution of weakly connected components on the
Web. The sizes of these components also follow a power law.

forward and backward directed links, the Web is a
very well connected graph. Surprisingly, even the
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this set has fewer than 90 nodes; in extreme cases it
has a few hundred thousand), or it would ‘explode’
to cover about 100 million nodes (but never the
entire 186 million). Further, for a fraction of the
starting nodes, both the forward and the backward
BFS runs would ‘explode’, each covering about 100
million nodes (though not the same 100 million in
the two runs). As we show below, these are the
starting points that lie in the SCC.

The cumulative distributions of the nodes covered
in these BFS runs are summarized in Fig. 7. They re-
veal that the true structure of the Web graph must be
somewhat subtler than a ‘small world’ phenomenon
in which a browser can pass from any Web page
to any other with a few clicks. We explicate this
structure in Section 3.

2.2.5. Zipf distributions vs power law distributions
The Zipf distribution is an inverse polynomial

function of ranks rather than magnitudes; for exam-
ple, if only in-degrees 1, 4, and 5 occurred then a
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Fig. 9. Connectivity of the Web: one can pass from any node of IN through SCC to any node of OUT. Hanging off IN and OUT are
TENDRILS containing nodes that are reachable from portions of IN, or that can reach portions of OUT, without passage through SCC. It
is possible for a TENDRIL hanging off from IN to be hooked into a TENDRIL leading into OUT, forming a TUBE: i.e., a passage from
a portion of IN to a portion of OUT without touching SCC.

regions have, if we explore in the direction ‘away’
from the center? The results are shown below in the
row labeled ‘exploring outward – all nodes’.

Similarly, we know that if we explore in-links
from a node in OUT, or out-links from a node in
IN, we will encounter about 100 million other nodes
in the BFS. Nonetheless, it is reasonable to ask:
how many other nodes will we encounter? That is,
starting from OUT (or IN), and following in-links
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long path will be the same no matter which node of
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(2) Mathematical models for evolving graphs, moti-
vated in part by the structure of the Web; in addi-
tion, one may consider the applicability of such
models to other large directed graphs such as the
phone-call graph, purchase=transaction graphs,
etc. [3].

(3) What notions of connectivity (besides weak and


