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Abstre t

This article provides an introductory summary to the formulation and application of exponential random
graph models for social networks. The possible ties among nodes of a network are regarded as random
variables, and assumptions about dependencies among these random tie variables determine the general
form of the exponential random graph model for the network. Examples of different dependence assumptions
and their associated models are given, including Bernoulli, dyad-independent and Markov random graph
models. The incorporation of actor attributes in social selection models is also reviewed. Newer, more
complex dependence assumptions are briefly outlined. Estimation procedures are discussed, including new
methods for Monte Carlo maximum likelihood estimation. We foreshadow the discussion taken up in other
papers in this special edition: that the homogeneous Markov random graph models of Frank and Strauss
[Frank, O., Strauss, D., 1986. Markov graphs. Journal of the American Statistical Association 81, 832-842]
are not appropriate for many observed networks, whereas the new model specifications of Snijders et al.
[Snijders, T.A.B., Pattison, P., Robins, G.L., Handock, M. New specifications for exponential random graph
models. Sociological Methodology, in press] offer substantial improvement.
© 2006 Elsevier B.V. All rights reserved.
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In recent years, there has been growing interest in exponential random graph models for
social networks, commonly called the p™ class of models (Frank and Strauss, 1986; Pattison and
Wasserman, 1999; Robins et al., 1999; Wasserman and Pattison, 1996). These probability models
for networks on a given set of actors allow generalization beyond the restrictive dyadic indepen-
dence assumption of the earlier p; model class (Holland and Leinhardt, 1981). Accordingly, they
permit models to be built from a more realistic construal of the structural foundations of social
behavior. The usefulness of these models as vehicles for examining multilevel and multitheoretical
hypotheses has been emphasized (e.g., Contractor et al., 2006).
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There have been a number of major theoretical and technical developments since Anderson
et al. (1999) presented their well-known primer on p”™ models. We summarize these advances in
this paper. In particular, we consider it important to ground these models conceptually in their
derivation from dependence assumptions, as the underlying basis of a model is then made explicit
and more readily linked with hypotheses about (unobserved) social processes underlying network
formation. It is through such an approach that new models can be developed in a principled way,
including models that incorporate actor attributes. Recent developments in model specification
and estimation need to be noted, as do new technical steps regarding setting structures and partial
dependence assumptions that not only expand the class of models but have important conceptual
implications. In particular, we now have a much better understanding of the properties of Markov
random graphs, and promising new specifications have been proposed to overcome some of their
deficiencies.

This article describes the models and summarizes current methodological developments with
an extended conceptual exposition. (More technical recent summaries are given by Wasserman and
Robins, 2005; Robins and Pattison, 2005; Snijders et al., in press.) We begin by briefly describing
the rationale for analyzing social networks with statistical models (Section 1). We then provide
an overview of the underlying logic of exponential random graph models and outline our general
framework for model construction (Section 2). In Section 3, we discuss the important concept of
a_sepetsetiee assutptio® at the heart of the modeling approach. In Section 4, we present a range
of different dependence assumptions and models. For model estimation (Section 5), we briefly
summarize the pseudo-likelihood estimation (PLE) approach, and review recent developments in
Monte Carlo Markov chain maximum likelihood estimation techniques. In Section 6, we present
a short example of fitting a model to network data. In conclusion, we note the importance of the
new model specifications that are the focus of attention in other papers in this special edition.

LW, )ﬁ{d';lms 1l pitoirks?

There are many well-known techniques that measure properties of a network, of the nodes,
or of subsets of nodes (e.g., density, centrality and cohesive subsets). These techniques serve
valuable purposes in describing and understanding network features that might bear on particular
research questions. Why, then, might we want to go beyond these techniques and search for a
well-fitting “0ee7 of an observed social network, and in particular a stat:st.ea] model? Reasons
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(2) Statistical models also allow inferences about whether certain network substructures — often
represented in the model by one or a small number of parameters — are more commonly
observed in the network than might be expected by chance. We can then develop hypotheses
about the social processes that might produce these structural properties.
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whether the observed network shows a strong tendency for reciprocity, over and above the chance
appearance of a number of reciprocated ties if relationships occurred completely at random. In
other words, do actors in the observed network tend to reciprocate relationship choices? Here
the structural characteristic (reciprocated ties) is the outcome of a social process (individuals
choosing to reciprocate the choices of others). Thus, as a simple example, we might posit a
stochastic network model with two parameters, one that reflects the propensity for ties to occur
at random and one that reflects an additional propensity for reciprocation to occur.

In general, the structural characteristics in question help to shape the form of the model. An
assumption of a reciprocity process leads us to propose a model in which an index of the level
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instance possible homophily effects in the classroom. Notice that each of these processes can be
represented as a small-scale graph configuration: for instance, a reciprocated tie, or a tie between
two girls.

2.1.3. gtep 3: tre sepetisetiee rypotres.s *ples a part.eulargor' to tre *gsel
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where (i) the summation is over all configurations A; (ii) na is the parameter corresponding to the
configuration A (and is non-zero only if all pairs of variables in A are assumed to be eo% e :t:0%-
ally sepetsen);? (i) ga( )y— yj e AYii is the %etworn stat:ste corresponding to configuration

A; ga( §‘:1 if the configuration is observed in the network , and is O otherwise:? (iv) K is a
normaliZing quantity which ensures that (1) is a proper probabi?fty distribution.*

All exponential random graph models are of the form of Eq. (1) which describes a general
probability distribution of graphs on 4 nodes. The probability of observing any particular graph
in this distribution is given by the equation, and this probability is dependent both on the statistics
ga( )in the network g%¢ on the various non-zero parameters nu for all configurations A in the
modél. Configurations'might include reciprocated ties, transitive triads and so on, so the model
enables us to examine a variety of possible structural regularities.

So why are dependence assumptions important here? Dependence assumptions have the con-
sequence of picking out different types of configurations as relevant to the model. Note from point
(ii) above, parameters are zero whenever variables in a configuration are conditionally indepen-
dent of each other. In other words, the only configurations that are relevant to the model are those
in which all possible ties in the configuration are mutually contingent on each other.®

It is worth noting that if a set of possible edges represents a configuration in the model, then
(1) implies that any subset of possible edges is also a configuration. Thus, single edges are always
configurations, as demonstrated in Section 4.

So the dependence assumption is crucial in constraining which configurations are possible in
the model. We will discuss particular examples in Section 4. A configuration A refers to a subset
of tie variables, and corresponds to a small network substructure. For instance, if for a directed
network we apply a dyadic dependence assumption (see Section 4) it will follow that reciprocity
parameters will be in the model. In this case, one configuration in the model is the set of variables
{r12,v21}, another is {-13,+-31}, and so on, with every dyad providing its own configuration.
Obviously for any of these configurations, if both of the ties are present in the observed graph, we
see a reciprocated tie, so the configuration represents a type of network substructure that may be
observed in the graph . We can think of this configuration diagrammatically as that substructure,
i.e. a reciprocated tie.

But of course there is no guarantee that all possible edges in a given configuration will be
present in a realized graph , so we will observe some of these possible substructures but not
others. Some ties will be reciprocated, some will not. Configurations represent possibilities. The
graph statistic, g
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the network. If we could observe the evolution of the network, and if the network started with few
reciprocated ties, we might expect to see more reciprocated ties emerge over time. In thinking this
way, though, we need to bear in mind that as a particular tie emerges through an imagined process
of generation, its presence may affect other potential neighboring ties. So there is an implicitly
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4.2. Dygs e *gzels: tre sye.e %eepetisetiee assutipt.o*

A somewhat more complicated (but not usually very realistic) assumption for directed networks
is that dyads, rather than edges, are independent of one another. With this dependence assumption
we have two types of configurations in the model, single edges and reciprocated edges. With
homogeneity imposed, the model then becomes:

1 1
Pr.g“— )»— L oxp Gijyij pijyijyji s exp(eL()y pM()} (3

where (). is the number of ties in and 4\ ( #: Y.y, is the number of mutual ties in
slightly'm re complex homogeneity aséum tior results in the p; model of Holland and Leinhardt
(1981).

Related but more complex and realistic models include the p, model (Lazega and van Duijn,
1997; Van Duijn et al., 2004) which assumes dyadic independence but conditional on node-level
attribute effects. The p» model is appropriate when structure is expected to arise from attributes.
It is an extension of the p; model with sender and receiver effects treated as random effects and
with actor and dyadic effects included. The more complex assumptions underpinning this model
make it more realistic for actual network data, especially when attribute effects are expected to
be strong. It differs from usual exponential random graph models in the incorporation of random
effects.Of course, in the case of non-directed networks, Bernoulli and dyad dependence models
are identical: for non-directed networks, the reciprocity parameter p in Eqg. (3) is irrelevant and
the model reduces to that of Eq. (2).
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Fig. 1. Configurations and parameters for Markov random graph models.

(t13) relates to two-paths, and the two-in-star parameter (t14) relates to popularity. Note the
important transitivity and cyclic configurations (Tg and t1p). The inclusion of these parameters

is a strength of these models because there is a paucity of network models that incorporate these
effects (Newman, 2003
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include a non-zero parameter for at least the three-star effect in models for many social networks
(Robins et al., 2004, 2005). An alternative approach (see below) includes all higher-order star
parameters but imposes constraints on the relationships between higher-order star parameters and
lower-order ones.
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needs to be collected for a full understanding of a social network. For further elaborations, see
also Schweinberger and Snijders (2003).

A second direction presented by Pattison and Robins (2002) was to propose non-Markov
dependencies among ties that did not share an actor but might be interdependent through third
party links. For instance,- , may be conditionally dependent on- . for four distinct actors if there
is an observed tie between elther or; and either r or s. These realzat 0*-gepe*eetit *oeels can be
developed through what Pattison and Robins (2002) described as part.al cepe®se* e struetures.
These models also permit the introduction of triangles involving attribute effects.

4.6. oY “osel speefisatotis

There is mounting evidence that homogeneous Markov random graph models are not good
models for many observed social networks (see Section 5.2 below), so these models are not
always useful in practical terms. Based on realization-dependence structures, Snijders et al. (in
press) developed new specifications for exponential random graph models that include new higher
order terms. These models introduce constraints on g-star parameters, as well as new higher-order
wtriangle configurations which allow for the measurement of highly clustered regions of the
network where two individuals may be connected to a large number of gothers (a g-triangle). For
these models, many higher order star and triangle effects are included (rather than set to zero) but
they are constrained in the form of a weighted sum with alternating signs. The motivation behind
these innovations, and the success of these new model specifications, are discussed in other papers
in this special edition.

5. Estll,haﬂl »

Anderson et al. (1999) in their p* primer used pseudo-likelihood estimation introduced by
Strauss and Ikeda (1990) in order to estimate the parameters of Markov models. We now know
that, depending on the data, there may be serious problems with pseudo-likelihood estimates for
these models. But for Markov random graph models, standard maximum likelihood estimation
is not tractable for any but very small networks, because of the difficulties in calculating the
normalizing constant in Eq. (1). What this means is that standard statistical techniques cannot be
applied to these models. These problems have been overcome in recent times by the development
of new Monte Carlo maximum likelihood techniques. We begin by making some rather brief
comments about pseudo-likelihood and then introduce the new estimation approaches.

5.1 seuso-l.pel.roos est*atoh: ot approx*ate teert fue
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detail):

Pr(Yj —1
Pl 7 @l nada( ) ©)

—_n G
Pr(Y.J‘ 0 ,5) ACY)

where (1) the sum is over all configurations A that containy- ; (2) na is the parameter corresponding
to configuration A; (3) 24 ( )is the era%ge stat.st.e; the change in the value of the network statistic
za( )ywhen v, changes froni1t0 0; (4) g‘is all the observations of ties in gxcept the observation
Yir
The calculation of the change statistic has been discussed extensively by a number of authors
(Anderson et al., 1999; Pattison and Robins, 2002; Wasserman and Pattison, 1996; Wasserman
and Robins, 2005), so we do not go into it further here. With the change statistics calculated,
to produce the pseudo-likelihood estimates, each possible tie-, becomes a case in a standard
logistic regression procedure, with y, predicted from the set of change statistics (Anderson et al.,
1999).

This procedure looks like a logistic regression — or indeed, a loglinear model — but ¢ s 4ot.
Logistic regression assumes independent observations, an assumption we explicitly do not make
with Markov and higher order models. So the parameter estimates may be biased; and the standard
errors are approximate at best, and may be too small. One should not rely on the Wald statistic as
a means to decide whether a parameter is significant or not. As well, one cannot assume that the
pseudo-likelihood deviance is asymptotically distributed as Chi-squared (which would be the case
in normal logistic regression). When the dependence among observations is not so strong, it is
generally the case that PL estimates will be more accurate. Pseudo-likelihood estimation has been
used to date as a pragmatic convenience (given that alternatives have not hitherto been readily
available) and the method does not have a principled basis. Whenever possible, the preferred
option is to use Monte Carlo estimation procedures.

5.2._‘am0v @ /ﬂ_‘o‘ﬁte Carlo *ax*u T.gel.roos est*at.o* Q%Q}E )

Important recent developments in Monte Carlo estimation techniques for exponential ran-
dom graph models have been presented and reviewed by a number of authors (see Snijders,
2002; Handcock et al., 2006; Snijders et al., in press; Wasserman and Robins, 2005), and are
further discussed in other articles in this special edition, so we include only a brief summary
here.

To begin, we note that simulation of these models can be implemented in a relatively straight-
forward way. Without going into details, simulation of the graph distribution for a given set of
parameter values can be achieved through a number of algorithms (e.g., algorithms well-known
in statistics more generally, such as the Metropolis algorithm). Simulation is at the heart of Monte
Carlo maximum likelihood estimation. Procedures for simulating exponential random graph dis-
tributions have been described by Strauss (1986), Snijders (2002) and Robins et al. (2005).

Although there are variations between different Monte Carlo estimation techniques (Snijders,
2002; Hunter and Handcock, 2006), they are based on the same central approach: simulation of a
distribution of random graphs from a starting set of parameter values, and subsequent refinement
of the parameter values by comparing the distribution of graphs against the observed graph, with
this process repeated until the parameter estimates stabilize. Recent software that implements
Monte Carlo maximum likelihood estimation for exponential random graph models is reviewed
in other papers in this special edition.
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Both estimation and simulation studies have raised issues of model specification for Markov
random graphs. Handcock (2003) defined “ear _eege*eraey as occurring when a model implied
that only a few graphs had other than very low probability (often these were the full graph
or the empty graph). If a model implies only these rather uninteresting outcomes, it will not
be useful for modeling real networks. Simulation studies suggest that Markov graph mod-
els that contain at least non-zero three-star parameters tend to exhibit less near degeneracy
than those with two-stars as the highest order non-zero star parameter (Robins et al., 2005).
But the inclusion of three-star parameters often is not sufficient to remove near degeneracy
behavior in Markov graph models, particularly when attempting to find models that reproduce
the high levels of transitivity often observed in human social structures (there is an extended
discussion in Snijders et al.,
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Table 1
Parameter estimates for Markov graph model: Florentine families business network (maximum likelihood estimates with
standard errors in brackets)

Parameter Configuration Estimate (standard error)

8 B B | 4.27 (1.13)

02
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