
Community detection in graphs

Santo Fortunato�

Complex Networks and Systems Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133, Torino,
I-ITALY.

The modern science of networks has brought signi�cant advances to our understanding of complex
systems. One of the most relevant features of graphs representing real systems is community
structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining
vertices of the same cluster and comparatively few edges joining vertices of di�erent clusters. Such
clusters, or communities, can be considered as fairly independent compartments of a graph, playing
a similar role like, e. g., the tissues or the organs in the human body. Detecting communities
is of great importance in sociology, biology and computer science, disciplines where systems are
often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite
the huge e�ort of a large interdisciplinary community of scientists working on it over the past few
years. We will attempt a thorough exposition of the topic, from the de�nition of the main elements
of the problem, to the presentation of most methods developed, with a special focus on techniques
designed by statistical physicists, from the discussion of crucial issues like the signi�cance of
clustering and how methods should be tested and compared against each other, to the description
of applications to real -479(systems)uprh2ks

ar
X

iv
:0

90
6.

06
12

v2
 [

ph
ys

ic
s.

so
c-

ph
]

 2
5

Ja
n

20
10

mailto:fortunato@isi.it

2

I. INTRODUCTION

The origin of graph theory dates back to Euler’s solu-
tion of the puzzle of K�onigsberg’s bridges in 1736 (Euler,
1736). Since then a lot has been learned about graphs
and their mathematical properties (Bollobas, 1998). In
the 20th century they have also become extremely useful
as representation of a wide variety of systems in di�erent
areas. Biological, social, technological, and information
networks can be studied as graphs, and graph analysis
has become crucial to understand the features of these
systems. For instance, social network analysis started in
the 1930’s and has become one of the most important
topics in sociology (Scott, 2000; Wasserman and Faust,
1994). In recent times, the computer revolution has pro-
vided scholars with a huge amount of data and computa-
tional resources to process and analyze these data. The
size of real networks one can potentially handle has also
grown considerably, reaching millions or even billions of
vertices. The need to deal with such a large number of
units has produced a deep change in the way graphs are
approached (Albert and Barab�asi, 2002; Barrat et al.,
2008; Boccaletti et al., 2006; Mendes and Dorogovtsev,
2003; Newman, 2003; Pastor-Satorras and Vespignani,
2004).

Graphs representing real systems are not regular like,
e. g., lattices. They are objects where order coexists with
disorder. The paradigm of disordered graph is the ran-
dom graph, introduced by P. Erd�os and A. R�enyi (Erd�os
and R�enyi, 1959). In it, the probability of having an
edge between a pair of vertices is equal for all possible
pairs (see Appendix). In a random graph, the distribu-
tion of edges among the vertices is highly homogeneous.
For instance, the distribution of the number of neigh-
bours of a vertex, or degree, is binomial, so most ver-
tices have equal or similar degree. Real networks are
not random graphs, as they display big inhomogeneities,
revealing a high level of order and organization. The de-
gree distribution is broad, with a tail that often follows
a power law: therefore, many vertices with low degree
coexist with some vertices with large degree. Further-

3

tional queries, like path searches (Agrawal and Jagadish,
1994; Wu et al., 2004). Ad hoc networks (Perkins, 2001),
i. e. self-con�guring networks formed by communication
nodes acting in the same region and rapidly changing
(because the devices move, for instance), usually have
no centrally maintained routing tables that specify how
nodes have to communicate to other nodes. Grouping the
nodes into clusters enables one to generate compact rout-
ing tables while the choice of the communication paths
is still e�cient (Steenstrup, 2001).

Community detection is important for other reasons,
too. Identifying modules and their boundaries allows for
a classi�cation of vertices, according to their structural
position in the modules. So, vertices with a central posi-
tion in their clusters, i. e. sharing a large number of edges
with the other group partners, may have an important
function of control and stability within the group; ver-
tices lying at the boundaries between modules play an im-
portant role of mediation and lead the relationships and
exchanges between di�erent communities (alike to Cser-
mely’s \creative elements" (Csermely, 2008)). Such clas-
si�cation seems to be meaningful in social (Burt, 1976;
Freeman, 1977; Granovetter, 1973) and metabolic net-
works (Guimer�a and Amaral, 2005). Finally, one can
study the graph where vertices are the communities and
edges are set between clusters if there are connections be-
tween some of their vertices in the original graph and/or
if the modules overlap. In this way one attains a coarse-
grained description of the original graph, which unveils
the relationships between modules 1. Recent studies indi-
cate that networks of communities have a di�erent degree
distribution with respect to the full graphs (Palla et al.,
2005); however, the origin of their structures can be ex-
plained by the same mechanism (Pollner et al., 2006).

Another important aspect related to community struc-
ture is the hierarchical organization displayed by most
networked systems in the real world. Real networks are
usually composed by communities including smaller com-
munities, which in turn include smaller communities, etc.
The human body o�ers a paradigmatic example of hier-
archical organization: it is composed by organs, organs
are composed by tissues, tissues by cells, etc. Another
example is represented by business �rms, who are char-
acterized by a pyramidal organization, going from the
workers to the president, with intermediate levels corre-
sponding to work groups, departments and management.
Herbert A. Simon has emphasized the crucial role played
by hierarchy in the structure and evolution of complex

1 Coarse-graining a graph generally means mapping it onto a
smaller graph having similar properties, which is easier to handle.
For this purpose, the vertices of the original graph are not nec-
essarily grouped in communities. Gfeller and De Los Rios have
proposed coarse-graining schemes that keep the properties of dy-
namic processes acting on the graph, like random walks (Gfeller
and De Los Rios, 2007) and synchronization (Gfeller and De Los
Rios, 2008).

systems (Simon, 1962). The generation and evolution of
a system organized in interrelated stable subsystems are
much quicker than if the system were unstructured, be-
cause it is much easier to assemble the smallest subparts
�rst and use them as building blocks to get larger struc-
tures, until the whole system is assembled. In this way
it is also far more di�cult that errors (mutations) occur
along the process.

The aim of community detection in graphs is to iden-
tify the modules and, possibly, their hierarchical orga-
nization, by only using the information encoded in the
graph topology. The problem has a long tradition and it
has appeared in various forms in several disciplines. The
�rst analysis of community structure was carried out by
Weiss and Jacobson (Weiss and Jacobson, 1955), who
searched for work groups within a government agency.
The authors studied the matrix of working relationships
between members of the agency, which were identi�ed by
means of private interviews. Work groups were separated
by removing the members working with people of di�er-
ent groups, which act as connectors between them. This
idea of cutting the bridges between groups is at the ba-
sis of several modern algorithms of community detection
(Section V). Research on communities actually started
even earlier than the paper by Weiss and Jacobson. Al-
ready in 1927, Stuart Rice looked for clusters of people
in small political bodies, based on the similarity of their
voting patterns (Rice, 1927). Two decades later, George
Homans showed that social groups could be revealed by
suitably rearranging the rows and the columns of matri-
ces describing social ties, until they take an approximate
block-diagonal form (Homans, 1950). This procedure is
now standard. Meanwhile, traditional techniques to �nd
communities in social networks are hierarchical cluster-
ing and partitional clustering (Sections IV.B and IV.C),
where vertices are joined into groups according to their
mutual similarity.

Identifying graph communities is a popular topic in
computer science, too. In parallel computing, for in-
stance, it is crucial to know what is the best way to
allocate tasks to processors so as to minimize the commu-
nications between them and enable a rapid performance
of the calculation. This can be accomplished by splitting
the computer cluster into groups with roughly the same
number of processors, such that the number of physi-
cal connections between processors of di�erent groups is
minimal. The mathematical formalization of this prob-
lem is called graph partitioning (Section IV.A). The �rst
algorithms for graph partitioning were proposed in the
early 1970’s.

In a seminal paper appeared in 2002, Girvan and New-
man proposed a new algorithm, aiming at the identi�ca-
tion of edges lying between communities and their suc-
cessive removal, a procedure that after some iterations
leads to the isolation of the communities (Girvan and
Newman, 2002). The intercommunity edges are detected
according to the values of a centrality measure, the edge
betweenness, that expresses the importance of the role

4

of the edges in processes where signals are transmitted
across the graph following paths of minimal length. The

5

a

b

c

FIG. 2 Community structure in social networks. a) Zachary’s karate club, a standard benchmark in community detection. The
colors correspond to the best partition found by optimizing the modularity of Newman and Girvan (Section VI.A). Reprinted
�gure with permission from Ref. (Donetti and Mu~noz, 2004). c2004 by IOP Publishing and SISSA. b) Collaboration network
between scientists working at the Santa Fe Institute. The colors indicate high level communities obtained by the algorithm
of Girvan and Newman (Section V.A) and correspond quite closely to research divisions of the institute. Further subdivisions
correspond to smaller research groups, revolving around project leaders. Reprinted �gure with permission from Ref. (Girvan
and Newman, 2002). c2002 by the National Academy of Science of the USA. c) Lusseau’s network of bottlenose dolphins.
The colors label the communities identi�ed through the optimization of a modi�ed version of the modularity of Newman and
Girvan, proposed by Arenas et al. (Arenas et al., 2008b) (Section XII.A). The partition matches the biological classi�cation
of the dolphins proposed by Lusseau. Reprinted �gure with permission from Ref. (Arenas et al., 2008b). c2008 by IOP
Publishing.

portant detecting modules in PPI networks is.

Relationships/interactions between elements of a sys-
tem need not be reciprocal. In many cases they have a
precise direction, that needs to be taken into account to
understand the system as a whole. As an example we can
cite predator-prey relationships in food webs. In Fig. 4
we see another example, taken from technology. The
system is the World Wide Web, which can be seen as 8(ted)-4-11.457graphction, bT369s356(identimizi0(et)28(bmizi0(pag85(caon,a5(caon,387(re397c85(caon,a)-29(o1f)-347(t0hic)28y--384(a)]TJ 0 -11.457 -459(p)lin)27(o16,)-341(t1he)-339(tak)t1heuse6(col1he)-384(ha)(tak)t1he)-379(f16,onak)t1hepag8k)t1hein)2816e)-500(an384(a)]TJ 0 -11.457asseauen)dgesseauen)-458(()]TJ
0 0 1 rg 0 0 1 Rl brt[()7 G
/F8 9.9676.3680.739 0 Td [21t al.

,'(Hy -459(p)li1(isksseauof)�guen)-339(ed:phins.)]T141

6

Proteasome

Endo/exonuclease

EGF-like domains

Matrix
metalloprotease

SerpinsNuclear hormone
receptors

Hypoxia inducable
factor

Tubulin

Mitotic spindle
checkpoint

ATP transporter
proteins

Peroxisomal
proteins

Cell cycle / cytokinesis

TGF-β

Cell cycle
regulation

Myosin

Laminin

Actinin

Casein kinase

Transcription
 regulation

Vascular endothelial
growth factors VEGF

Intracellular signalling
cascade

Breast cancer
 anti-estrogen resistance

JAK/STAT
cascade

Karyopherin
docking complex

NF-kappaB
regulation

Nucleocytoplasm
transport

7

FIG. 4 Community structure in technological networks.
Sample of the web graph consisting of the pages of a web
site and their mutual hyperlinks, which are directed. Com-
munities, indicated by the colors, were detected with the al-
gorithm of Girvan and Newman (Section V.A), by neglecting
the directedness of the edges. Reprinted �gure with permis-
sion from Ref. (Newman and Girvan, 2004). c2004 by the
American Physical Society.

Edge directedness is not the only complication to deal
with when facing the problem of graph clustering. In
many real networks vertices may belong to more than
one group. In this case one speaks of overlapping com-
munities and uses the term cover, rather than partition,
whose standard de�nition forbids multiple memberships
of vertices. Classical examples are social networks, where
an individual usually belongs to di�erent circles at the
same time, from that of work colleagues to family, sport
associations, etc.. Traditional algorithms of community

8

12 34

567

8

91011

12

13

14151617 18

FIG. 6 Community structure in multipartite networks. This
bipartite graph refers to the Southern Women Event Partici-
pation data set. Women are represented as open symbols with
black labels, events as �lled symbols with white labels. The
illustrated vertex partition has been obtained by maximizing
a modi�ed version of the modularity by Newman and Girvan,
tailored on bipartite graphs (Barber, 2007) (Section VI.B).
Reprinted �gure with permission from Ref. (Barber, 2007).
c2007 by the American Physical Society.

long to di�erent vertex classes. Multipartite graphs are
usually reduced to unipartite projections of each vertex
class. For instance, from the bipartite network of scien-
tists and papers one can extract a network of scientists
only, who are related by coauthorship. In this way one
can adopt standard techniques of network analysis, in
particular standard clustering methods, but a lot of infor-
mation gets lost. Detecting communities in multipartite
networks can have interesting applications in, e.g., mar-
keting. Large shopping networks, in which customers are
linked to the products they have bought, allow to classify
customers based on the types of product they purchase
more often: this could be used both to organize targeted
advertising, as well as to give recommendations about
future purchases (Adomavicius and Tuzhilin, 2005). The
problem of community detection in multipartite networks
is not trivial, and usually requires ad hoc methodologies.
Fig. 6 illustrates the famous bipartite network of South-
ern Women studied by Davis et al. (Davis et al., 1941).
There are 32 vertices, representing 18 women from the
area of Natchez, Mississippi, and 14 social events. Edges
represent the participation of the women in the events.
From the �gure one can see that the network has a clear
community structure.

In some of the previous examples, edges have (or can
have) weights. For instance, the edges of the collabora-
tion network of Fig. 2b could be weighted by the number
of papers coauthored by pairs of scientists. Similarly,

the edges of the word association network of Fig. 5 are
weighted by the number of times pairs of words have been
associated by people. Weights are precious additional in-
formation on a graph, and should be considered in the
analysis. In many cases methods working on unweighted
graphs can be simply extended to the weighted case.

III. ELEMENTS OF COMMUNITY DETECTION

The problem of graph clustering, intuitive at �rst sight,
is actually not well de�ned. The main elements of the
problem themselves, i. e. the concepts of community and
partition, are not rigorously de�ned, and require some
degree of arbitrariness and/or common sense. Indeed,
some ambiguities are hidden and there are often many
equally legitimate ways of resolving them. Therefore, it
is not surprising that there are plenty of recipes in the
literature and that people do not even try to ground the
problem on shared de�nitions.

It is important to stress that the identi�cation of struc-
tural clusters is possible only if graphs are sparse, i. e. if
the number of edges m is of the order of the number of
nodes n of the graph. If m� n, the distribution of edges
among the nodes is too homogeneous for communities to
make sense2. In this case the problem turns into some-
thing rather di�erent, close to data clustering (Gan et al.,
2007), which requires concepts and methods of a di�erent
nature. The main di�erence is that, while communities in
graphs are related, explicitly or implicitly, to the concept
of edge density (inside versus outside the community), in
data clustering communities are sets of points which are
\close" to each other, with respect to a measure of dis-

9

A. Computational complexity

The massive amount of data on real networks currently
available makes the issue of the e�ciency of clustering al-
gorithms essential. The computational complexity of an
algorithm is the estimate of the amount of resources re-
quired by the algorithm to perform a task. This involves
both the number of computation steps needed and the
number of memory units that need to be simultaneously

10

We de�ne the intra-cluster density �int(C) of the sub-
graph C as the ratio between the number of internal edges
of C and the number of all possible internal edges, i. e.

�int(C) =
internal edges of C

nc(nc � 1)=2
: (1)

Similarly, the inter-cluster density �ext(C) is the ratio be-
tween the number of edges running from the vertices of
C to the rest of the graph and the maximum number of
inter-cluster edges possible, i. e.

�ext(C) =
inter-cluster edges of C

nc(n� nc)
: (2)

For C to be a community, we expect �int(C) to be ap-
preciably larger than the average link density �(G) of
G, which is given by the ratio between the number of
edges of G and the maximum number of possible edges
n(n � 1)=2. On the other hand, �ext(C) has to be much
smaller than �(G). Searching for the best tradeo� be-
tween a large

11

ternatives, the n-clan and the n-club. An n-clan is an
n-clique whose diameter is not larger than n, i. e. a sub-

12

if it is di�erent from a random graph. A random graph
�a la Erd�os-R�enyi (Section A.3), for instance, is not ex-
pected to have community structure, as any two vertices
have the same probability to be adjacent, so there should
be no preferential linking involving special groups of ver-
tices. Therefore, one can de�ne a null model, i. e. a graph
which matches the original in some of its structural fea-
tures, but which is otherwise a random graph. The null
model is used as a term of comparison, to verify whether
the graph at study displays community structure or not.
The most popular null model is that proposed by New-
man and Girvan and consists of a randomized version of
the original graph, where edges are rewired at random,
under the constraint that the expected degree of each
vertex matches the degree of the vertex in the original
graph (

13

edges, using techniques like the augmenting path algo-
rithm (Ahuja et al., 1993). Similarly, one could consider
all paths running between two vertices. In this case, there
is the problem that the total number of paths is in�nite,
but this can be avoided if one performs a weighted sum
of the number of paths. For instance, paths of length l
can be weighted by the factor �l, with � < 1. Another
possibility, suggested by Estrada and Hatano (Estrada
and Hatano, 2008, 2009), is to weigh paths of length l
with the inverse factorial 1=l!. In both cases, the contri-
bution of long paths is strongly suppressed and the sum
converges.

Another important class of measures of vertex similar-

14

Powered by yFiles

FIG. 7 Schematic example of a hierarchical graph. Sixteen modules with 32 vertices each clearly form four larger clusters. All
vertices have degree 64. Reprinted �gure with permission from Ref. (Lancichinetti et al., 2009). c2009 by IOP Publishing.

FIG. 8 A dendrogram, or hierarchical tree. Horizontal
cuts correspond to partitions of the graph in communities.

15

does not make sense without a distance function5, the
other two are quite well de�ned. The property of richness
implies that, given a partition, one can set edges between
the vertices in such a way that the partition is a natural
outcome of the resulting graph (e.g., it could be achieved
by setting edges only between vertices of the same clus-
ter). Consistency here implies that deleting inter-cluster
edges and adding intra-cluster edges yields the same par-
tition.

Many algorithms are able to identify a subset of mean-
ingful partitions, ideally one or just a few, whereas some
others, like techniques based on hierarchical clustering
(Section IV.B), deliver a large number of partitions. That
does not mean that the partitions found are equally good.
Therefore it is helpful (sometimes even necessary) to have
a quantitative criterion to assess the goodness of a graph
partition. A quality function is a function that assigns a
number to each partition of a graph. In this way one can
rank partitions based on their score given by the quality
function. Partitions with high scores are \good", so the
one with the largest score is by de�nition the best. Nev-
ertheless, one should keep in mind that the question of
when a partition is better than another one is ill-posed,
and the answer depends on the speci�c concept of com-
munity and/or quality function adopted.

A quality function Q is additive if there is an elemen-
tary function q such that, for any partition P of a graph

Q(P) =
X
C2P

q(C); (11)

where C is a generic cluster of partition P. Eq. 11 states
that the quality of a partition is given by the sum of the
qualities of the individual clusters. The function q(C)

16

can be calculated without problems. In fact, in order to
form an edge between i and j one needs to join two stubs
(i. e. half-edges), incident with i and j. The probability
pi to pick at random a stub incident with i is ki=2m, as
there are ki stubs incident with i out of a total of 2m.
The probability of a connection between i and j is then
given by the product pipj , since edges are placed inde-
pendently of each other. The result is kikj=4m

2, which
yields an expected number Pij = 2mpipj = kikj=2m of
edges between i and j. So, the �nal expression of modu-
larity reads

Q =
1

2m

X
ij

�
Aij �

kikj
2m

�
�(Ci; Cj): (14)

Since the only contributions to the sum come from vertex
pairs belonging to the same cluster, we can group these
contributions together and rewrite the sum over the ver-
tex pairs as a sum over the clusters

Q =

ncX
c=1

h lc
m
�
�
dc
2m

�2 i
: (15)

Here, nc is the number of clusters, lc the total number of
edges joining vertices of module c and dc the sum of the
degrees of the vertices of c

17

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

FIG. 9 Graph partitioning. The dashed line shows the so-
lution of the minimum bisection problem for the graph illus-
trated, i. e. the partition in two groups of equal size with min-
imal number of edges running between the groups. Reprinted
�gure with permission from Ref. (Fortunato and Castellano,
2009). c2009 by Springer.

number of edges lying between the groups is minimal.
The number of edges running between clusters is called
cut size. Fig. 9 presents the solution of the problem for
a graph with fourteen vertices, for g = 2 and clusters of
equal size.

Specifying the number of clusters of the partition is
necessary. If one simply imposed a partition with the
minimal cut size, and left the number of clusters free,
the solution would be trivial, corresponding to all ver-
tices ending up in the same cluster, as this would yield
a vanishing cut size. Specifying the size is also neces-
sary, as otherwise the most likely solution of the problem
would consist in separating the lowest degree vertex from
the rest of the graph, which is quite uninteresting. This
problem can be actually avoided by choosing a di�erent
measure to optimize for the partitioning, which accounts
for the size of the clusters. Some of these measures will
be briey introduced at the end of this section.

Graph partitioning is a fundamental issue in parallel
computing, circuit partitioning and layout, and in the
design of many serial algorithms, including techniques
to solve partial di�erential equations and sparse linear
systems of equations. Most variants of the graph parti-
tioning problem are NP-hard. There are however several
algorithms that can do a good job, even if their solutions
are not necessarily optimal (Pothen, 1997). Many algo-
rithms perform a bisection of the graph. Partitions into
more than two clusters are usually attained by iterative
bisectioning. Moreover, in most cases one imposes the
constraint that the clusters have equal size. This prob-
lem is called minimum bisection and is NP-hard.

The Kernighan-Lin algorithm (Kernighan and Lin,
1970) is one of the earliest methods proposed and is still

frequently used, often in combination with other tech-
niques. The authors were motivated by the problem of
partitioning electronic circuits onto boards: the nodes
contained in di�erent boards need to be linked to each

18

where �i is the Laplacian eigenvalue corresponding to
eigenvector vi. It is worth remarking that the sum con-
tains at most n�1 terms, as the Laplacian has at least one
zero eigenvalue. Minimizing R equals to the minimiza-
tion of the sum on the right-hand side of Eq. 19. This task
is still very hard. However, if the second lowest eigenvec-
tor �2 is close enough to zero, a good approximation of
the minimum can be attained by choosing s parallel to
the corresponding eigenvector v

19

minimized via spectral clustering (Chan et al., 1993; Ha-
gen and Kahng, 1992) (Section IV.D).

Algorithms for graph partitioning are not good for
community detection, because it is necessary to provide
as input the number of groups and in some cases even
their sizes, about which in principle one knows nothing.
Instead, one would like an algorithm capable to produce

20

cost function based on distances between points and/or
from points to centroids, i. e. suitably de�ned positions in
space. Some of the most used functions are listed below:

� Minimum k-clustering. The cost function here is
the diameter of a cluster, which is the largest dis-
tance between two points of a cluster. The points
are classi�ed such that the largest of the k cluster
diameters is the smallest possible. The idea is to
keep the clusters very \compact".

� k-clustering sum. Same as minimum k-clustering,
but the diameter is replaced by the average distance
between all pairs of points of a cluster.

� k-center. For each cluster i one de�nes a refer-
ence point xi, the centroid, and computes the max-
imum di

21

techniques, like k-means clustering (Section IV.C). One
may wonder why it is necessary to cluster the points ob-
tained through the eigenvectors, when one can directly
cluster the initial set of objects, based on the similarity
matrix. The reason is that the change of representation
induced by the eigenvectors makes the cluster properties

22

non-zero elements of the eigenvectors corresponding to
the connected components are proportional to the square
root of the degree of the corresponding vertex. So, if de-
grees are very di�erent from each other, and especially if
there are vertices with very low degree, some eigenvec-
tor elements may be quite small. As we shall see below,
in the context of the technique by Ng et al. (Ng et al.,
2001), a suitable normalization procedure is introduced
to alleviate this problem.

23

graph vertices have the same or similar degrees, there
is no substantial di�erence between the unnormalized
and the normalized Laplacians. If there are big inhomo-
geneities among the vertex degrees, instead, the choice
of the Laplacian considerably a�ects the results. In gen-
eral, normalized Laplacians are more promising because
the corresponding spectral clustering techniques implic-
itly impose a double optimization on the set of partitions,
such that the intracluster edge density is high and, at

24

based on breadth-�rst-search (Brandes, 2001; Newman
and Girvan, 2004; Zhou et al., 2006).

In the context of information spreading, one could
imagine that signals ow across random rather than
geodesic paths. In this case the betweenness of an edge
is given by the frequency of the passages across the edge
of a random walker running on the graph (random-walk

25

many times, the method gives good results on a network
of gene co-occurrences (Wilkinson and Huberman, 2004),
with a substantial gain of computer time. The technique
has been also applied to a network of people correspond-
ing via email (Tyler et al., 2003). In practical examples,
only vertices lying at the boundary between communities
may not be clearly classi�ed, and be assigned sometimes
to a group, sometimes to another. This is actually a nice
feature of the method, as it allows to identify overlaps
between communities, as well as the degree of member-
ship of overlapping vertices in the clusters they belong
to. The algorithm of Girvan and Newman, which is de-
terministic, is unable to accomplish this9. Another fast
version of the Girvan-Newman algorithm has been pro-
posed by Rattigan et al. (Rattigan et al., 2007). Here,
a quick approximation of the edge betweenness values
is carried out by using a network structure index, which
consists of a set of vertex annotations combined with a
distance measure (Rattigan et al., 2006). Basically one
divides the graph into regions and computes the distances
of every vertex from each region. In this way Rattigan et
al. showed that it is possible to lower the complexity of
the algorithm to O(m), by keeping a fair accuracy in the
estimate of the edge betweenness values. This version of
the Girvan-Newman algorithm gives good results on the
benchmark graphs proposed by Brandes et al. (Brandes
et al., 2003) (see also Section XV.A), as well as on a col-
laboration network of actors and on a citation network.

Chen and Yuan have pointed out that counting all pos-
sible shortest paths in the calculation of the edge be-
tweenness may lead to unbalanced partitions, with com-
munities of very di�erent size, and proposed to count only
non-redundant paths, i. e. paths whose endpoints are
all di�erent from each other: the resulting betweenness
yields better results than standard edge betweenness for
mixed clusters on the benchmark graphs of Girvan and
Newman (Chen and Yuan, 2006). Holme et al. have used
a modi�ed version of the algorithm in which vertices,
rather than edges, are removed (Holme et al., 2003). A
centrality measure for the vertices, proportional to their
site betweenness, and inversely proportional to their in-
degree, is chosen to identify boundary vertices, which
are then iteratively removed with all their edges. This
modi�cation, applied to study the hierarchical organiza-
tion of biochemical networks, is motivated by the need to
account for reaction kinetic information, that simple site
betweenness does not include. The indegree of a vertex is
solely used because it indicates the number of substrates
to a metabolic reaction involving that vertex; for the pur-
pose of clustering the graph is considered undirected, as
usual.

9 It may happen that, at a given iteration, two or more edges of the
graph have the same value of maximal betweenness. In this case
one can pick any of them at random, which may lead in general
to (slightly) di�erent partitions at the end of the computation.

The algorithm of Girvan and Newman is unable to
�nd overlapping communities, as each vertex is assigned
to a single cluster. Pinney and Westhead have proposed
a modi�cation of the algorithm in which vertices can
be split between communities (Pinney and Westhead,
2006). To do that, they also compute the betweenness

27

tion centrality of an edge requires the calculation of the
distances between all pairs of vertices, which can be done
with breadth-�rst-search in a time O(mn). So, in order
to compute the information centrality of all edges one re-
quires a time O(m2n). At this point one removes the edge
with the largest value of information centrality and recal-
culates the information centrality of all remaining edges
with respect to the running graph. Since the procedure is
iterated until there are no more edges in the network, the
�nal complexity isO(m

29

applying re�nement strategies based on local search at
various steps of the greedy agglomeration (Noack and
Rotta, 2009). Such re�nement procedures are similar
to the technique proposed by Newman to improve
the results of his spectral optimization of modularity
((Newman, 2006b) and Section VI.A.4). Another good
strategy consists in alternating greedy optimization with
stochastic perturbations of the partitions (Mei et al.,
2009).

A di�erent greedy approach has been introduced by
Blondel et al. (Blondel et al., 2008), for the general case
of weighted graphs. Initially, all vertices of the graph are
put in di�erent communities. The �rst step consists of
a sequential sweep over all vertices. Given a vertex i,
one computes the gain in weighted modularity (Eq. 35)
coming from putting i in the community of its neighbor
j and picks the community of the neighbor that yields
the largest increase of Q, as long as it is positive. At the
end of the sweep, one obtains the �rst level partition. In
the second step communities are replaced by superver-
tices, and two supervertices are connected if there is at
least an edge between vertices of the corresponding com-
munities. In this case, the weight of the edge between
the supervertices is the sum of the weights of the edges
between the represented communities at the lower level.
The two steps of the algorithm are then repeated, yield-
ing new hierarchical levels and supergraphs (Fig. 12). We
remark that modularity is always computed from the ini-
tial graph topology: operating on supergraphs enables
one to consider the variations of modularity for parti-
tions of the original graph after merging and/or split-
ting of groups of vertices. Therefore, at some iteration,
modularity cannot increase anymore, and the algorithm
stops. The technique is more limited by storage demands
than by computational time. The latter grows like O(m),
so the algorithm is extremely fast and graphs with up
to 109 edges can be analyzed in a reasonable time on
current computational resources. The software can be
found at http://findcommunities.googlepages.com/.
The modularity maxima found by the method are bet-
ter than those found with the greedy techniques by
Clauset et al. (Clauset et al., 2004) and Wakita and
Tsurumi (Wakita and Tsurumi, 2007). However, clos-
ing communities within the immediate neighborhood of
vertices may be inaccurate and yield spurious partitions
in practical cases. So, it is not clear whether some of the
intermediate partitions could correspond to meaningful
hierarchical levels of the graph. Moreover, the results
of the algorithm depend on the order of the sequential
sweep over the vertices.

We conclude by stressing that, despite the improve-
ments and re�nements of the last years, the accuracy of
greedy optimization is not that good, as compared with
other techniques.

2. Simulated annealing

Simulated annealing (Kirkpatrick et al., 1983) is a
probabilistic procedure for global optimization used in
di�erent �elds and problems. It consists in performing
an exploration of the space of possible states, looking for
the global optimum of a function F , say its maximum.
Transitions from one state to another occur with proba-
bility 1 if F increases after the change, otherwise with a
probability exp(��F), where �F is the decrease of the
function and � is an index of stochastic noise, a sort of
inverse temperature, which increases after each iteration.
The noise reduces the risk that the system gets trapped
in local optima. At some stage, the system converges to a
stable state, which can be an arbitrarily good approxima-
tion of the maximum of F , depending on how many states
were explored and how slowly � is varied. Simulated an-
nealing was �rst employed for modularity optimization
by Guimer�a et al. (Guimer�a et al., 2004). Its standard
implementation (Guimer�a and Amaral, 2005) combines
two types of \moves": local moves, where a single vertex
is shifted from one cluster to another, taken at random;
global moves, consisting of mergers and splits of com-
munities. Splits can be carried out in several distinct

30

FIG. 12 Hierarchical optimization of modularity by Blondel et al. (Blondel et al., 2008

32

33

partitions keeps growing. The advantage of Kcut is that
one can play with low values for the (maximal) number
of clusters ‘ at each iteration; if partitions are balanced,
after a levels of recursions, the number of clusters of the
partition is approximately K = ‘a. Therefore the com-
plexity of Kcut is O[(n+m) logK] for a �nal partition in
(at most) K clusters, which is much lower than the com-
plexity of the algorithm by White and Smyth. Ruan and
Zhang tested Kcut on arti�cial graphs generated with the
planted ‘-partition model (Section XV), and on real net-
works including Zachary’s karate club (Zachary, 1977),
the American college football network (Girvan and New-
man, 2002) and two collaboration networks of Jazz musi-
cians (Gleiser and Danon, 2003) and physicists (

34

Genetic algorithms (Holland, 1992) have also been
used to optimize modularity. In a standard genetic algo-
rithm one has a set of candidate solutions to a problem,
which are numerically encoded as chromosomes, and an
objective function to be optimized on the space of solu-
tions. The objective function plays the role of biological
�tness for the chromosomes. One usually starts from
a random set of candidate solutions, which are progres-
sively changed through manipulations inspired by bio-
logical processes regarding real chromosomes, like point
mutation (random variations of some parts of the chro-
mosome) and crossing over (generating new chromosomes
by merging parts of existing chromosomes). Then, the �t-
ness of the new pool of candidates is computed and the
chromosomes with the highest �tness have the greatest
chances to survive in the next generation. After sev-
eral iterations only solutions with large �tness survive.
In a work by Tasgin et al. (Tasgin et al., 2007), parti-
tions are the chromosomes and modularity is the �tness
function. With a suitable choice of the algorithm param-
eters, like the number of chromosomes and the rates of
mutation and crossing over, Tasgin et al. could obtain
results of comparative quality as greedy modularity op-
timization on Zachary’s karate club (Zachary, 1977), the
college football network (Girvan and Newman, 2002) and
the benchmark by Girvan and Newman (Section XV.A).
Genetic algorithms were also adopted by Liu et al. (Liu
et al., 2007). Here the maximum modularity partition is
obtained via successive bipartitions of the graph, where
each bipartition is determined by applying a genetic algo-
rithm to each subgraph (starting from the original graph
itself), which is considered isolated from the rest of the
graph. A bipartition is accepted only if it increases the
total modularity of the graph.

In Section III.C.2 we have seen that the modularity
maximum is obtained for the partition that minimizes
the di�erence between the cut size and the expected cut
size of the partition (Eq. 17). In the complete weighted
graph Gw such that the weight wij of an edge is 1 �
kikj=2m, if i and j are connected in G, and �kikj=2m if
they are not, the di�erence jCutP j � ExCutP is simply
the cut size of partition P. So, maximizing modularity
for G is equivalent to the problem of �nding the partition
with minimal cut size of the weighted graph Gw, i. e.
to a graph partitioning problem. The problem can then
be e�ciently solved by using existing software for graph
partitioning (Djidjev, 2007).

B. Modi�cations of modularity

In the most recent literature on graph clustering sev-
eral modi�cations and extensions of modularity can be
found. They are usually motivated by speci�c classes of
clustering problems and/or graphs that one may want to
analyze.

Modularity can be easily extended to graphs with
weighted edges (Newman, 2004). One needs to replace

the degrees ki and kj in Eq. 14 with the strengths si
and sj of vertices i and j. We remind that the strength
of a vertex is the sum of the weights of edges adjacent
to the vertex (Section A.1). For a proper normalization,
the number of edges m in Eq. 14 has to be replaced by
the sum W of the weights of all edges. The product
sisj=2W is now the expected weight of the edge ij in
the null model of modularity, which has to be compared
with the actual weight WW.2.57352(the)-A 9.962TJ -205.862 -1.188(dularit-11nonerat)-375(off 4.673 0 Td [(nd)5952(the)-A 9.962TJ -205.862 -1.188(dularit-o/F10 6.9738 Tf 5.187 -6.225sually)-352(moB(pro.9626 Tf 15.041 056w)]TJ/F8 0 -(elTcon)f(ut)1(e488(edge/F8 9xd [(ret)]TJ 78(it)-6m)]TJ/F8 Td [(timi963 -12.399 T770)-333(6544irG)]TJ/803 -1 056wTd [(G)]TJ/F10 6.9sn)-452re-dsn(,)38 Tf 4.67 -1.495.51e)-28.412)28(t)Q 9.9626 Tf 11.886 1.4876Tf -6 5-363(ed8(ertices)]TJ/F11 9.413]TJ/F11 9.9626 Tf-13.594 15.f)-367(m2(propET
q
17(to)-3379.5335114 -11.cm
[]0 dto)ume-288 w7(to)m-1 0 Td [l S
Q0 g 0 .747 0 Td [(,379.5335105.125(Eq.)]TJ
0 0 64.67 -1.495 in604)46.288e)-587X 9.9626 Tf 11.886 13[(j)]-2172T9.978i5b.40149u17 Td [(the)-3316 T21 091�8(4738 Tf 5.186 -1.495 Td888Tf 7.036(the)-A 9.9626 Tf 11.886 1.4472]d [(of)-489(an)-488(f 5.927 -1.493723 [(j)51 9.966.9738 Tf 5.186 -1.495 cal158 798341 9.96 9.9626 Tf 8.872 1.495513[616(the)-o63(part-e-2ec)-6.2099.4014i Td f 4.673 0 Td [(.2.46 T2.5931 9.96 9.9626 Tf 8.872 1.495513[616(the)-)-334(moe-2e4)-6.2099.4014j(propET
q
17(to)-3442.9355114 -11.cm
[]0 dto)ume-288 w7(to)m-31.393)arl S
Q0 g 0 .747 0 Td [(,)54.258 105.125(Eq.)]TJ
0 0 64.67 -1.49521726520078)]TJ/F1!6 Tf 12.504 0 Td [(inctionub)]TJ/803 -1.495 cal158 798341 9.96 9.9626 Tf 8.872nub

35

FIG. 14 Problem of the directed modularity introduced by
Arenas et al. (Arenas et al., 2007). The two situations illus-
trated are equivalent for modularity, as vertices A and A0, as
well as B and B0

36

based on the results of the optimization. Membership co-
e�cients are also present in an extension of modularity to
overlapping communities proposed by Shen et al. (Shen
et al., 2009). Here the membership coe�cient of vertex
v in community c is a sum over the edges of v belonging
to c, where each edge has a weight proportional to the
number of maximal cliques of c containing the edge.

Gaertler et al. have introduced quality measures based
on modularity’s principle of the comparison between a
variable relative to the original graph and the correspond-
ing variable of a null model (Gaertler et al., 2007). They
remark that modularity is just the di�erence between
the coverage of a partition and the expected coverage
of the partition in the null model. We remind that the
coverage of a partition is the ratio between the number
of edges within clusters and the total number of edges
(Section III.C.2). Based on this observation, Gaertler et
al. suggest that the comparison between the two terms
can be done with other binary operations as well. For
instance, one could consider the ratio

S�cov =

Pnc

c=1 lc=mPnc

c=1(dc=2m)2
; (44)

where the notation is the same as in Eq. 15. This can
be done as well for any variable other than coverage.
By using performance, for instance, (Section III.C.2) one
obtains two new quality functions S�perf and S�perf , cor-
responding to taking the di�erence or the ratio between
performance and its null model expectation value, respec-
tively. Gaertler et al. compared the results obtained with

39

edges in the graph, which in many graph realizations is
not homogeneous even if the linking probability is con-
stant, like in Erd�os-R�enyi graphs. The uctuations de-
termine concentrations of links in some subsets of the
graph, which then appear like communities. According
to the de�nition of modularity, a graph has community
structure with respect to a random graph with equal size
and expected degree sequence. Therefore, the modular-
ity maximum of a graph reveals a signi�cant community
structure only if it is appreciably larger than the modu-
larity maximum of random graphs of the same size and

40

42

are often possible as well. In this section we shall review
recent spectral techniques proposed mostly by physicists
explicitly for graph clustering.

Early works have shown that the eigenvectors of the
transfer matrix T (Section A.2) can be used to extract
useful information on community structure. The trans-
fer matrix acts as a time propagator for the process of

43

1234

567 89

1011 121314

15161718

0

0 5 10 15 20
i

−0.4

−0.2

0

0.2

0.4

x i

FIG. 18 Basic principle of the spectral algorithm by Capocci
et al. (Capocci et al., 2005). The bottom diagram shows the

44

state of the system may not be the one where all spins
are aligned, but a state where di�erent spin values co-
exist, in homogeneous clusters. If Potts spin variables
are assigned to the vertices of a graph with community
structure, and the interactions are between neighbour-
ing spins, it is likely that the structural clusters could
be recovered from like-valued spin clusters of the sys-
tem, as there are many more interactions inside com-
munities than outside. Based on this idea, inspired by
an earlier paper by Blatt et al. (Blatt et al., 1996), Re-
ichardt and Bornholdt proposed a method to detect com-
munities that maps the graph onto a zero-temperature
q-Potts model with nearest-neighbour interactions (Re-
ichardt and Bornholdt, 2004). The Hamiltonian of the
model, i. e. its energy, reads

H = �J
X
i;j

Aij�(�i; �j) +

qX
s=1

ns(ns � 1)

2
; (54)

where Aij is the element of the adjacency matrix, � is
Kronecker’s function, ns the number of spins in state s,
J and are coupling parameters. The energy H is the
sum of two competing terms: the �rst is the classical
ferromagnetic Potts model energy, and favors spin align-
ment; the second term instead peaks when the spins are
homogeneously distributed. The ratio =J expresses the
relative importance of the two terms: by tuning =J one
can explore di�erent levels of modularity of the system,
from the whole graph seen as a single cluster to clusters
consisting of individual vertices. If =J is set to the value
�(G) of the average density of edges of the graph G, the
energy of the system is smaller if spins align within sub-
graphs such that their internal edge density exceeds �(G),
whereas the external edge density is smaller than �(G),
i. e. if the subgraphs are clusters (Section III.B.1). The
minimization of H is carried out via simulated annealing
((Kirkpatrick et al., 1983) and Section VI.A.2), starting
from a con�guration where spins are randomly assigned
to the vertices and the number of states q is very high.
The procedure is quite fast and the results do not de-
pend on q (provided q is su�ciently high). The method
also allows to identify vertices shared between communi-
ties, from the comparison of partitions corresponding to
global and local energy minima. The Hamiltonian H can
be rewritten as

H =
X
i<j

�(�i; �j)(�Aij); (55)

which is the energy of an in�nite-range Potts spin glass,
as all pairs of spins are interacting (neighboring or not)
and there may be both positive and negative couplings.
The method can be simply extended to the analysis of
weighted graphs, by introducing spin couplings propor-
tional to the edge weights, which amounts to replacing
the adjacency matrix A with the weight matrix W in
Eq. 54. Ispolatov et al. (Ispolatov et al., 2006) have
adopted a similar Hamiltonian as in Eq. 54, with a tun-
able antiferromagnetic term interpolating between the

corresponding term of Eq. 54 and the entropy term (pro-
portional to ns log ns) of the free energy, whose mini-
mization is equivalent to �nding the states of the �nite-
temperature Potts model used by Blatt et al. (Blatt et al.,
1996). Eq. 55 is at the basis of the successive generaliza-
tion of modularity with arbitrary null models proposed
by Reichardt and Bornholdt, that we have discussed in
Section VI.B.

In another work (S.-W. Son et al., 2006), Son et al.
have presented a clustering technique based on the Fer-
romagnetic Random Field Ising Model (FRFIM). Given a
weighted graph with weight matrix W, the Hamiltonian
of the FRFIM on the graph is

H = �1

2

X
i;j

Wij�i�j �
X
i

Bi�i: (56)

In Eq. 56 �i =

45

can become as low as O(n�), which enables the analysis
of systems with millions of vertices. Tests on Barab�asi-
Albert graphs (Section A.3) show that the latter have no
community structure, as expected.

B. Random walk

Random walks (Hughes, 1995) can also be useful to
�nd communities. If a graph has a strong community
structure, a random walker spends a long time inside a
community due to the high density of internal edges and
consequent number of paths that could be followed. Here
we describe the most popular clustering algorithms based
on random walks. All of them can be trivially extended
to the case of weighted graphs.

Zhou used random walks to de�ne a distance between
pairs of vertices (Zhou, 2003a): the distance dij between
i and j is the average number of edges that a random
walker has to cross to reach j starting from i. Close
vertices are likely to belong to the same community.
Zhou de�nes a \global attractor" of a vertex i to be a
closest vertex to i (i. e. any vertex lying at the smallest
distance from i

46

dure is then repeated by choosing each vertex as source.
In this way one can associate an n-dimensional vector to
each vertex, which correspons to a point in an Euclidean
space. The vector us is actually the s-th column of the
matrix (I + A)T , where I and A are the identity and
adjacency matrix, respectively. The idea is that the vec-
tor us describes the inuence that vertex s exerts on the
graph through signaling. Vertices of the same commu-
nity are expected to have similar inuence on the graph
and thus to correspond to vectors which are \close" in
space. The vectors are �nally grouped via fuzzy k-means
clustering (Section IV.C). The optimal number of clus-
ters corresponds to the partition with the shortest aver-
age distance between vectors in the same community and
the largest average distance between vectors of di�erent
communities. The signaling process is similar to di�u-
sion, but with the important di�erence that here there is
no ow conservation, as the amount of signal at each ver-
tex is not distributed among its neighbors but transferred
entirely to each neighbor (as if the vertex sent multiple
copies of the same signal). The complexity of the algo-
rithm is O[T (hki+ 1)n2], where hki is the average degree
of the graph. Like in the previous algorithm by Latapy
and Pons (Latapy and Pons, 2005), �nding an optimal
value for the number of iterations T is non-trivial.

Delvenne et al. (Delvenne et al., 2008) have shown that
random walks enable one to introduce a general quality
function, expressing the persistence of clusters in time. A
cluster is persistent with respect to a random walk after
t time steps if the probability that the walker escapes the
cluster before t steps is low. Such probability is computed
via the clustered autocovariance matrix Rt, which, for a
partition of the graph in c clusters, is de�ned as

Rt = HT (�Mt � �T�)H: (57)

Here, H is the n� c membership matrix, whose element
Hij equals one if vertex i is in cluster j, zero otherwise;
M is the transition matrix of the random walk; � the
diagonal matrix whose elements are the stationary prob-
abilities of the random walk, i. e. �ii = ki=2m, ki being
the degree of vertex i; � is the vector whose entries are
the diagonal elements of �. The element (Rt)ij expresses
the probability for the walk to start in cluster i and end
up in cluster j after t steps, minus the stationary proba-
bility that two independent random walkers are in i and
j. In this way, the persistence of a cluster i is related to
the diagonal element (Rt)ii. Delvenne et al. de�ned the
stability of the clustering

r(t; H) = min
0�s�t

cX
i=1

(Rs)ii = min
0�s�t

trace[Rs]: (58)

The aim is then, for a given time t, �nding the partition
with the largest value for r(t; H). For t = 0, the most

47

in p steps (di�usion ow). The second step, which has no
physical counterpart, consists in raising each single entry
of the matrix M to some power �, where � is now real-
valued. This operation, called ination, enhances the
weights between pairs of vertices with large values of the
di�usion ow, which are likely to be in the same commu-
nity. Next, the elements of each column must be divided
by their sum, such that the sum of the elements of the
column equals one and a new transfer matrix is recov-
ered. After some iterations, the process delivers a stable
matrix, with some remarkable properties. Its elements
are either zero or one, so it is a sort of adjacency matrix.
Most importantly, the graph described by the matrix is
disconnected, and its connected components are the com-
munities of the original graph. The method is really sim-
ple to implement, which is the main reason of its success:
as of now, the MCL is one of the most used clustering al-
gorithms in bioinformatics. The code can be downloaded
from http://www.micans.org/mcl/. Due to the ma-
trix multiplication of the expansion step, the algorithm
should scale as O(n3), even if the graph is sparse, as the
running matrix becomes quickly dense after a few steps
of the algorithm. However, while computing the matrix
multiplication, MCL keeps only a maximum number k of
non-zero elements per column, where k is usually much
smaller than n. So, the actual worst-case running time of
the algorithm is O(nk2) on a sparse graph. A problem of
the method is the fact that the �nal partition is sensitive
to the parameter � used in the ination step. Therefore
several di�erent partitions can be obtained, and it is not
clear which are the most meaningful or representative.

C. Synchronization

Synchronization (Pikovsky et al., 2001) is an emergent
phenomenon occurring in systems of interacting units
and is ubiquitous in nature, society and technology. In
a synchronized state, the units of the system are in the
same or similar state(s) at every time. Synchronization

49

tions and model hypotheses. If the data set is a graph,
the model, based on hypotheses on how vertices are con-
nected to each other, has to �t the actual graph topol-
ogy. In this section we review those clustering tech-
niques attempting to �nd the best �t of a model to the
graph, where the model assumes that vertices have some
sort of classi�cation, based on their connectivity pat-
terns. We mainly focus on methods adopting Bayesian
inference (Winkler, 2003), in which the best �t is ob-
tained through the maximization of a likelihood (gen-
erative models), but we also discuss related techniques,
based on

50

fraction of vertices in group r, and �ri

51

unable to provide. Another technique similar to that by
Newman and Leicht has been designed by Ren et al. (Ren
et al., 2009). The model is based on the group fractions
f�ig, de�ned as above, and a set of probabilities f�r;ig,
expressing the relevance of vertex i for group r; the basic
assumption is that the probability that two vertices of
the same group are connected by an edge is proportional
to the product of the relevances of the two vertices. In
this way, there is an explicit relation between group mem-
bership and edge density, and the method can only de-
tect community structure. The community assignments
are recovered through an expectation-maximization pro-
cedure that closely follows that by Newman and Leicht.

Maximum likelihood estimation has been used by
�Copi�c et al. to de�ne an axiomatization of the prob-
lem of graph clustering and its related concepts (�Copi�c
et al., 2005). The starting point is again the planted
partition model (Section XV), with probabilities pin and
pout. A novelty of the approach is the introduction of
the size matrix S, whose element Sij indicates the max-
imum strength of interaction between vertices i and j.
For instance, in a graph with unweighted connections,
all elements of S equal 1. In this case, the probabil-
ity that the graph conceals a community structure co-
incides with the expression (63) by Hastings. �Copi�c et
al. used this probability as a quality function to de�ne
rankings between graph partitions (likelihood rankings).
The authors show that the likelihood rankings satisfy a
number of general properties, which should be satis�ed
by any reasonable ranking. They also propose an algo-
rithm to �nd the maximum likelihood partition, by using
the auxiliary concept of pseudo-community structure, i.
e. a grouping of the graph vertices in which it is speci-
�ed which pairs of vertices stay in the same community
and which pairs instead stay in di�erent communities. A
pseudo-community may not be a community because the
transitive property is not generally valid, as the focus is
on pairwise vertex relationships: it may happen that i
and j are classi�ed in the same group, and that j and
k are classi�ed in the same group, but that i and k are
not classi�ed as belonging to the same group. We believe
that the work by �Copi�c et al. is an important �rst step
towards a more rigorous formalization of the problem of
graph clustering.

Zanghi et al. (Zanghi et al., 2008) have designed a
clustering technique that lies somewhat in between the
method by Hastings and that by Newman and Leicht.
As in Ref. (Hastings, 2006), they use the planted parti-
tion model to represent a graph with community struc-
ture; as in Ref. (Newman and Leicht, 2007), they max-
imize the classi�cation likelihood using an expectation-
maximization algorithm (Dempster et al., 1977). The
algorithm runs for a �xed number of clusters q, like that
by Newman and Leicht; however, the optimal number
of clusters can be determined by running the algorithm
for a range of q-values and selecting the solution that
maximizes the Integrated Classi�cation Likelihood intro-
duced by Biernacki et al. (Biernacki et al., 2000). The

time complexity of the algorithm is O(n2).

52

B. Blockmodeling, model selection and information theory

Block modeling is a common approach in statistics and

53

synthesis Y of the full structure that a signaler sends to
a receiver, who tries to infer the original graph topology
X from it (Fig. 21). The same idea is at the basis of an
earlier method by Sun et al. (Sun et al., 2007), which was
originally designed for bipartite graphs evolving in time
and will be described in Section XIII. The best partition
corresponds to the signal Y that contains the most infor-
mation about X. This can be quantitatively assessed by
the minimization of the conditional information H(XjY)
of X given Y ,

H(XjY) = log

24 qY
i=1

�
ni(ni � 1)=2

lii

�Y
i>j

�
ninj
lij

�35 ; (69)

where q is the number of clusters, ni the number of ver-
tices in cluster i, lij the number of edges between clusters
i and j. We remark that, if one imposes no constraints
on q, H(XjY) is minimal in the trivial case in which
X = Y (H(XjX) = 0). This solution is not acceptable
because it does not correspond to a compression of infor-
mation with respect to the original data set. One has to
look for the ideal tradeo� between a good compression
and a small enough information H(XjY). The Minimum
Description Length (MDL) principle (Gr�unwald et al.,
2005; Rissanen, 1978) provides a solution to this prob-
lem, which amounts to the minimization of a function
given by H(XjY) plus a function of the number n of
vertices, m of edges and q of clusters. The optimiza-
tion is performed by simulated annealing, so the method

54

FIG. 21 Basic principle of the method by Rosvall and Bergstrom (Rosvall and Bergstrom, 2007). An encoder sends to a

55

is possible.

Raghavan et al. (Raghavan et al., 2007) have designed
a simple and fast method based on label propagation.
Vertices are initially given unique labels (e.g. their ver-
tex labels). At each iteration, a sweep over all vertices,
in random sequential order, is performed: each vertex
takes the label shared by the majority of its neighbors.
If there is no unique majority, one of the majority labels
is picked at random. In this way, labels propagate across
the graph: most labels will disappear, others will domi-
nate. The process reaches convergence when each vertex
has the majority label of its neighbors. Communities
are de�ned as groups of vertices having identical labels
at convergence. By construction, each vertex has more
neighbors in its community than in any other commu-
nity. This resembles the strong de�nition of community
we have discussed in Section III.B.2, although the latter
is stricter, in that each vertex must have more neighbors
in its community than in the rest of the graph. The al-
gorithm does not deliver a unique solution. Due to the
many ties encountered along the process it is possible
to derive di�erent partitions starting from the same ini-
tial condition, with di�erent random seeds. Tests on real
graphs show that all partitions found are similar to each
other, though. The most precise information that one can
extract from the method is contained by aggregating the
various partitions obtained, which can be done in various
ways. The authors proposed to label each vertex with the
set of all labels it has in di�erent partitions. Aggregat-
ing partitions enables one to detect possible overlapping
communities. The main advantage of the method is the
fact that it does not need any information on the num-
ber and the size of the clusters. It does not need any

56

matrix M : the element Mij is one if vertex j belongs
to the community of vertex i, otherwise it is zero. The
membership matrix can be rewritten by suitably permu-
tating rows and columns based on their mutual distances.
The distance between two rows (or columns) is de�ned as

57

proximates the graph at study, where the goodness of the
approximation is expressed by the distance between the
corresponding matrices. In this way the original prob-
lem of �nding graph subsets becomes an optimization
problem. Long et al. called this procedure Community
Learning by Graph Approximation (CLGA). Sometimes
the minimization of the matrix distance can be turned
into the maximization of the trace of a matrix. Measures
like cut size or ratio cut can be also formulated as the
trace of matrices (see for instance Eq. 18). In fact, CLGA
includes traditional graph partitioning as a special case
(Section IV.A). Long et al. designed three algorithms
for CLGA: two of them seek for divisions of the graph
into overlapping or non-overlapping groups, respectively;
in the third one an additional constraint is introduced
to produce groups of comparable size. The complexity
of these algorithms is O(tn2k), where t is the number
of iterations until the optimization converges and k the
number of groups. The latter has to be given as an input,
which is a serious limit of CLGA.

A fast algorithm by Wu and Huberman identi�es com-
munities based on the properties of resistor networks (Wu
and Huberman, 2004). It is essentially a method for par-
titioning graphs in two parts, similar to spectral bisec-
tion, although partitions in an arbitrary number of com-
munities can be obtained by iterative applications. The
graph is transformed into a resistor network where each
edge has unit resistance. A unit potential di�erence is
set between two randomly chosen vertices. The idea is
that, if there is a clear division in two communities of
the graph, there will be a visible gap between voltage
values for vertices at the borders between the clusters.
The voltages are calculated by solving Kircho�’s equa-
tions: an exact solution would be too time consuming,

58

and Kulakowski, 2007). Here the equations describe a
dynamic process, in which the original graph topology
evolves to a disconnected graph, whose components are
the clusters of the original graph.

Despite the signi�cant improvements in computational
complexity, it is still problematic to apply clustering al-
gorithms to many large networks available today. There-
fore Narasimhamurthy et al. (Narasimhamurthy et al.,
2008) proposed a two-step procedure: �rst, the graph
at study is decomposed in smaller pieces by a fast
graph partitioning technique; then, a clustering method
is applied to each of the smaller subgraphs obtained
[Narasimhamurthy et al. used the Clique Percolation
Method (Section XI.A)]. The initial decomposition of the
graph is carried out through the multilevel method by
Dhillon et al. (Dhillon et al., 2007). It is crucial to verify
that the initial partitioning does not split the commu-
nities of the graph among the various subgraphs of the
decomposition. This can be done by comparing, on arti-
�cial graphs, the �nal clusters obtained with the two-step
method with those detected by applying the chosen clus-
tering technique to the entire graph.

XI. METHODS TO FIND OVERLAPPING
COMMUNITIES

Most of the methods discussed in the previous sec-
tions aim at detecting standard partitions, i. e. partitions
in which each vertex is assigned to a single community.
However, in real graphs vertices are often shared between
communities (Section II), and the issue of detecting over-
lapping communities has become quite popular in the last
few years. We devote this section to the main techniques
to detect overlapping communities.

A. Clique percolation

The most popular technique is the Clique Percolation
Method (CPM) by Palla et al. (Palla et al., 2005). It is
based on the concept that the internal edges of a com-
munity are likely to form cliques due to their high den-
sity. On the other hand, it is unlikely that intercom-
munity edges form cliques: this idea was already used
in the divisive method of Radicchi et al. (Section V.B).
Palla et al. use the term k-clique to indicate a com-
plete graph with k vertices18. Notice that a k-clique is
di�erent from the n-clique (see Section III.B.2) used in
social science. If it were possible for a clique to move
on a graph, in some way, it would probably get trapped
inside its original community, as it could not cross the
bottleneck formed by the intercommunity edges. Palla et
al. introduced a number of concepts to implement this

18 In graph theory the k-clique by Palla et al. is simply called
clique, or complete graph, with k vertices (Section A.1).

FIG. 23 Clique Percolation Method. The example shows
communities spanned by adjacent 4-cliques. Overlapping ver-
tices are shown by the bigger dots. Reprinted �gure with per-
mission from Ref. (Palla et al., 2005). c2005 by the Nature
Publishing Group.

idea. Two k-cliques are adjacent if they share k � 1 ver-
tices. The union of adjacent k-cliques is called k-clique
chain. Two k-cliques are connected if they are part of
a k-clique chain. Finally, a k-clique community is the
largest connected subgraph obtained by the union of a
k-clique and of all k-cliques which are connected to it.
Examples of k-clique communities are shown in Fig. 23.
One could say that a k-clique community is identi�ed by

59

in a reasonably short time. The actual scalability of the
algorithm depends on many factors, and cannot be ex-
pressed in closed form. An interesting aspect of k-clique
communities is that they allow to make a clear distinc-
tion between random graphs and graphs with community
structure. This is a rather delicate issue: we have seen in
Section VI.C that Newman-Girvan modularity can attain
large values on random graphs. Der�enyi et al. (Der�enyi
et al., 2005) have studied the percolation properties of
k-cliques on random graphs, when the edge probability
p varies. They found that the threshold pc(k) for the
emergence of a giant k-clique community, i. e. a com-
munity occupying a macroscopic portion of the graph, is
pc(k) = [(k�1)n]�1=(k�1), n being the number of vertices
of the graph, as usual. For k = 2, for which the k-cliques
reduce to edges, one recovers the known expression for
the emergence of a giant connected component in Erd�os-
R�enyi graphs (Section A.3). This percolation transition
is quite sharp: if the edge probability p < pc(k), k-clique
communities are rather small; if p > pc(k) there is a gi-
ant component and many small communities. To assess
the signi�cance of the clusters found with the CPM, one
can compare the detected cover19 with the cover found
on a null model graph, which is random but preserves
the expected degree sequence of the original graph. The
modularity of Newman and Girvan is based on the same
null model (Section III.C.2). The null models of real
graphs seem to display the same two scenarios found
for Erd�os-R�enyi graphs, characterized by the presence
of very small k-clique communities, with or without a
giant cluster. Therefore, covers with k-clique communi-
ties of large or appreciable size can hardly be due to
random uctuations. Palla and coworkers (Adamcsek
et al., 2006) have designed a software package implement-
ing the CPM, called CFinder, which is freely available
(www.cfinder.org).

The algorithm has been extended to the analysis of
weighted, directed and bipartite graphs. For weighted
graphs, in principle one can follow the standard proce-
dure of thresholding the weights, and apply the method
on the resulting graphs, treating them as unweighted.
Farkas et al. (Farkas et al., 2007) proposed instead to
threshold the weight of cliques, de�ned as the geomet-
ric mean of the weights of all edges of the clique. The
value of the threshold is chosen slightly above the criti-
cal value at which a giant k-clique community emerges,
in order to get the richest possible variety of clusters. On
directed graphs, Palla et al. de�ned directed k-cliques as
complete graphs with k vertices, such that there is an
ordering among the vertices, and each edge goes from a
vertex with higher order to one with lower order. The or-
dering is determined from the restricted outdegree of the
vertex, expressing the fraction of outgoing edges point-

19 We remind that cover is the equivalent of partition for overlap-
ping communities.

ing to the other vertices of the clique versus the total
outdegree. The method has been extended to bipartite
graphs by Lehmann et al. (Lehmann et al., 2008). In this
case one uses bipartite cliques, or bicliques: a subgraph
Ka;b is a biclique if each of a vertices of one class are
connected with each of b vertices of the other class. Two
cliques Ka;b are adjacent if they share a clique Ka�1;b�1,
and a Ka;b clique community is the union of all Ka;b

cliques that can be reached from each other through a
path of adjacent Ka;b cliques. Finding all Nc bicliques
of a graph is an NP-complete problem (Peeters, 2003),
mostly because the number of bicliques tends to grow
exponentially with the size of the graph. The algorithm
designed by Lehmann et al. to �nd biclique communities
is similar to the original CPM, and has a total complex-
ity of O(N2

c). On sparse graphs, Nc often grows linearly
with the number of edges m, yielding a time complexity
O(m2). Bicliques are also the main ingredients of BiTec-
tor, a recent algorithm to detect community structure in
bipartite graphs (Du et al., 2008).

Kumpula et al. have developed a fast implementa-
tion of the CPM, called Sequential Clique Percolation
algorithm (SCP) (Kumpula et al., 2008). It consists in
detecting k-clique communities by sequentially inserting
the edges of the graph at study, one by one, starting
from an initial empty graph. Whenever a new edge is
added, one checks whether new k-cliques are formed, by
searching for (k� 2)-cliques in the subset of neighboring
vertices of the endpoints of the inserted edge. The pro-
cedure requires to build a graph ��, in which the vertices
are (k�1)-cliques and edges are set between vertices cor-
responding to (k� 1)-cliques which are subgraphs of the
same k-clique. At the end of the process, the connected
components of �� correspond to the searched k-clique
communities. The technique has a time complexity which
is linear in the number of k-cliques of the graph, so it can
vary a lot in practical applications. Nevertheless, it turns
out to be much faster than the original implementation
of the CPM. The big adM. 0 tal. 5 Td [(a;b)]Tw783 6(one,)8(y)-486h,ne,ho257(random,)-276(, Td [(cedure)-281(reqn)]TJ -14ec)2nt(e)t(man)28

61

the contribution of the edges’ weights to the sums in Wc

and Sc by the (average) membership coe�cients of the
vertices of the edge. The determination of the eigenvec-
tors is the most computationally expensive part of the
method, so the time complexity is the same as that of
the algorithm by White and Smyth (see Section VI.A.4),
i. e. O(K2n+Km), which is essentially linear in n if the
graph is sparse and K � n.

Nepusz et al. proposed a di�erent approach based
on vertex similarity (Nepusz et al., 2008). One starts
from the membership matrix U, de�ned as in the pre-
vious method by Zhang et al. From U a matrix S is
built, where sij =

Pnc

k=1 uikujk, expressing the similar-
ity between vertices (nc is the number of clusters). If
one assumes to have information about the actual vertex
similarity, corresponding to the matrix ~S, the best cover
is obtained by choosing U such that S approximates as
closely as possible ~S. This amounts to minimize the func-
tion

DG(U) =

nX
i=1

nX
j=1

wij(~sij � sij)2; (74)

74e1987i6 Tf 3.875 0 Td [(U)]TJ/74�es.457 Td [(vious)0TJ -222.4997

gra,(p)-5 [(one)74(sets 3.875 0 Td [(U)]TJ699702es.457 Td [(vious)0TJ -222.4997)267 -1.494 Td [(ij)]TJ/F8 9.9626 T9.7.386 1.494 Td [(1)-27051,

62

FIG. 24 Communities as sets of edges. In the �gure, the
graph has a natural division in two triangles, with the central
vertex shared between them. If communities are identi�ed by
their internal edges, detecting the triangles and their overlap-
ping vertex becomes easier than by using methods that group
vertices. Reprinted �gure with permission from Ref. (Evans
and Lambiotte, 2009). c2009 by the American Physical So-
ciety.

2008)), and the length of the walk represents a resolu-
tion parameter that can be tuned to get better results.
Ahn et al. (Ahn et al., 2009) proposed to group edges

63

are based on this principle. However, many real graphs
display hierarchical cluster structures, with clusters in-
side other clusters (Simon, 1962). In these cases, there
are more levels of organization of vertices in clusters, and
more relevant scales. In principle, clustering algorithms
should be able to identify them. Multiresolution meth-
ods can do the trick, in principle, as they scan continu-
ously the range of possible cluster scales. Recently other
methods have been developed, where partitions are by
construction hierarchically nested in each other. In this
section we discuss both classes of techniques.

A. Multiresolution methods

In general, multiresolution methods have a freely tun-
able parameter, that allows to set the characteristic size
of the clusters to be detected. The general spin glass
framework by Reichardt and Bornholdt ((Reichardt and
Bornholdt, 2006a) and Section VI.B) is a typical exam-
ple, where is the resolution parameter. The extension

64

plot of the number of clusters versus r (Fig. 25). The
length of a plateau gives a measure of the stability of the
partition against the variation of r. The procedure is
able to disclose the community structure of a number of
real benchmark graphs. As expected, the most relevant
partitions can be found in intervals of r not including
the value r = 0, which corresponds to the case of stan-
dard modularity (Fig. 25

65

rapidly increasing number of partitions, obtained by min-
imal shifts of vertices between clusters, introduces a large
amount of noise, that blurs signatures of stable partitions
like plateaus, spikes, etc. that one can observe in small
systems. In this respect, it seems far more reliable focus-
ing on correlations between partitions (like the average
similarity used by Ronhovde and Nussinov (Ronhovde
and Nussinov, 2008; Ronhovde and Nussinov, 2009)) than
on properties of the individual partitions (like the mea-
sures of occurrence used by Arenas et al. (Arenas et al.,
2008b) and by Lancichinetti et al. (Lancichinetti et al.,
2009)).

B. Hierarchical methods

The natural procedure to detect the hierarchical struc-
ture of a graph is hierarchical clustering, that we have
discussed in Section IV.B. There we have emphasized
the main weakness of the procedure, which consists of
the necessity to introduce a criterion to identify relevant
partitions (hierarchical levels) out of the full dendrogram
produced by the given algorithm. Furthermore, there is
no guarantee that the results indeed reect the actual hi-

66

a

b

c d

e

f

a b c d e f

1

1

1

1

1/9

a b c d e f

1

1

1

1/3

1/4

67

cosine similarity of the vectors describing the correspond-
ing papers, a well known measure used in information
retrieval (Baeza-Yates and Ribeiro-Neto, 1999). In each
snapshot Hopcroft et al. identi�ed the natural communi-
ties, de�ned as those communities of the hierarchical tree
that are only slightly a�ected by minor perturbations of
the graph, where the perturbation consists in removing
a small fraction of the vertices (and their edges). Such
natural communities are conceptually similar to the sta-
ble communities we will see in Section XIV. Hopcroft et
al. found the best matching natural communities across
di�erent snapshots, and in this way they could follow the
history of communities. In particular they could see the
emergence of new communities, corresponding to new re-
search topics. The main drawback of the method comes
from the use of hierarchical clustering, which is unable
to sort out meaningful communities out of the hierarchi-

68

FIG. 28 Relation between structural features and evolution
of a community. a) Relation between the probability that a
vertex will abandon the community in the next time step and
its relative external strength. b) Relation between the prob-
ability of disintegration of a community in the next time step
and its relative external strength. Reprinted �gure with per-
mission from Ref. (Palla et al., 2007). c2007 by the Nature
Publishing Group.

of the graph: the stability index (measuring the tendency
of a vertex to interact with the same vertices over time),
the sociability index (measuring the number of di�erent
interactions of a vertex, basically the number of Join and
Leave events), the popularity index (measuring the num-
ber of vertices attracted by a cluster in a given time in-
terval) and the inuence index (measuring the inuence
a vertex has on the others, which is computed from the
number of vertices that leave or join a cluster together
with the vertex). Applications on a coauthorship network
of computer scientists and on a network of subjects for
clinical trials show that the behavioral measures above
enable one to make reliable predictions about the time
evolution of such graphs (including, e. g., the inference
of missing links (Liben-Nowell and Kleinberg, 2003)).

Dynamic communities can be as well detected with
methods of information compression, such as some of
those we have seen in Section IX.B. Sun et al. (Sun

et al., 2007) applied the Minimum Description Length
(MDL) principle (Gr�unwald et al., 2005; Rissanen, 1978)
to �nd the minimum encoding cost for the description
of a time sequence of graphs and their partitions in
communities. The method is quite similar to that suc-
cessively developed by Rosvall and Bergstrom (Rosvall
and Bergstrom, 2007), which is however de�ned only for
static graphs (Section IX.B). Here one considers bipartite
graphs evolving in time. The time sequence of graphs can
be separated in segments, each containing some number
of consecutive snapshots of the system. The graphs of
each segment are supposed to have the same modular
structure (i. e. they represent the same phase in the
history of the system), so they are characterized by the
same partition of the two vertex classes. For each graph
segment it is possible to de�ne an encoding cost, which
combines the encoding cost of the partition of the graphs
of the segment with the entropy of compression of the seg-
ment in the subgraph segments induced by the partition.
The total encoding cost C of the graph series is given
by the sum of the encoding costs of its segments. Mini-
mizing C enables one to �nd not only the most modular
partition for each graph segment (high modularity27 cor-
responds to low encoding costs for a partition), but also
the most compact subdivision of the snapshots into seg-
ments, such that graphs in the same segment are strongly
correlated with each other. The latter feature allows to
identify change points in the time history of the system,
i. e. short periods in which the dynamics produces big
changes in the graph structure (corresponding to, e.g.,
extreme events). The minimization of C is NP-hard,
so the authors propose an approximation method called
GraphScope, which consists of two steps: �rst, one looks
for the best partition of each graph segment; second, one
looks for the best division in segments. In both cases
the \best" result corresponds to the minimal encoding
cost. The best partition within a graph segment is found
by local search. GraphScope has the big advantage not
to require any input, like the number and sizes of the
clusters. It is also suitable to operate in a streaming en-
vironment, in which new graph con�gurations are added
in time, following the evolution of the system: the com-
putational complexity required to process a snapshot (on
average) is stable over time. Tests on real evolving data
sets show that GraphScope is able to �nd meaningful
communities and change points.

Since keeping track of communities in di�erent time
steps is not a trivial problem, as we have seen above, it
is perhaps easier to adopt a vertex-centric perspective,
in which one monitors the community of a given vertex
at di�erent times. For any method, given a vertex i and
a time t, the community to which i belongs at time t is

27 We stress that here by modularity we mean the feature of a graph
having community structure, not the modularity of Newman and
Girvan.

69

well de�ned. Fenn et al. (Fenn et al., 2009) used the mul-
tiresolution method by Reichardt et al. (Reichardt and
Bornholdt, 2006a) (Section VI.B) and investigated a fully
connected graph with time-dependent weights, represent-
ing the correlations of time series of hourly exchange rate
returns. The resolution parameter is �xed to the value
that occurs in most stability plateaus of the system at
di�erent time steps. Motivated by the work of Guimer�a
and Amaral (Guimer�a and Amaral, 2005) (Section XVI),
Fenn et al. identify the role of individual vertices in their
community through the pair (zin; zb), where zin is the
z-score of the internal strength (weighted degree, Sec-
tion A.1), de�ned in Eq. 98, and zb the z-score of the
site betweenness, de�ned by replacing the internal degree
with the site betweenness of Freeman (Freeman, 1977) in
Eq. 98. We remind that the site betweenness is a measure
of the number of shortest paths running through a ver-
tex. The variable zb

70

(for LiveJournal) with their degree of interconnectedness.
Moreover, the probability of growth of LiveJournal com-
munities is positively correlated to a combination of fac-
tors including the community size, the number of friends
of community members which are not in the community
and the ratio of these two numbers. A high density of
triads within a community appears instead to hinder its
growth.

XIV. SIGNIFICANCE OF CLUSTERING

Given a network, many partitions could represent
meaningful clusterings in some sense, and it could be dif-
�cult for some methods to discriminate between them.
Quality functions evaluate the goodness of a partition
(Section III.C.2), so one could say that high quality cor-
responds to meaningful partitions. But this is not nec-
essarily true. In Section VI.C we have seen that high
values of the modularity of Newman and Girvan do not
necessarily indicate that a graph has a de�nite cluster
structure. In particular we have seen that partitions of
random graphs may also achieve considerably large val-
ues ofQ, although we do not expect them to have commu-
nity structure, due to the lack of correlations between the
linking probabilities of the vertices. The optimization of
quality functions, like modularity, delivers the best par-
tition according to the criterion underlying the quality
function. But is the optimal clustering also signi�cant,
i. e. a relevant feature of the graph, or is it just a byprod-
uct of randomness and basic structural properties like, e.
g., the degree sequence? Little e�ort has been devoted
to this crucial issue, that we discuss here.

In some works the concept of signi�cance has been
related to that of robustness or stability of a partition
against random perturbations of the graph structure.
The basic idea is that, if a partition is signi�cant, it will
be recovered even if the structure of the graph is mod-
i�ed, as long as the modi�cation is not too extensive.
Instead, if a partition is not signi�cant, one expects that
minimal modi�cations of the graph will su�ce to disrupt
the partition, so other clusterings are recovered. A nice
feature of this approach is the fact that it can be applied
for any clustering technique. Gfeller et al. (Gfeller et al.,
2005) considered the general case of weighted graphs. A
graph is modi�ed, in that its edge weights are increased
or decreased by a relative amount 0 < � < 1. This
choice also allows to account for the possible e�ects of
uncertainties in the values of the edge weights, resulting
from measurements/experiments carried out on a given
system. After �xing � (usually to 0:5), multiple realiza-
tions of the original graph are generated. The best par-
tition for each realization is identi�ed and, for each pair
of adjacent vertices i and j, the in-cluster probability pij
is computed, i. e. the fraction of realizations in which
i and j were classi�ed in the same cluster. Edges with
in-cluster probability smaller than a threshold � (usually
0:8) are called external edges. The stability of a partition

is estimated through the clustering entropy

S = � 1

m

X
(i;j):Aij=1

[pij log2 pij � (1� pij) log2(1� pij)];

(84)
where m is, as usual, the number of graph edges, and
the sum runs over all edges. The most stable partition
has pij = 0 along inter-cluster edges and pij = 1 along
intra-cluster edges, which yields S = 0; the most unstable
partition has pij = 1=2 on all edges, yielding S = 1. The
absolute value of S is not meaningful, though, and needs
to be compared with the corresponding value for a null
model graph, similar to the original graph, but with sup-
posedly no cluster structure. Gfeller et al. adopted the
same null model of Newman-Girvan modularity, i. e. the
class of graphs with expected degree sequence coinciding
with that of the original graph. Since the null model is
de�ned on unweighted graphs, the signi�cance of S can
be assessed only in this case, although it would not be
hard to think of a generalization to weighted graphs. The
approach enables one as well to identify unstable vertices,
i. e. vertices lying at the boundary between clusters. In
order to do that, the external edges are removed and
the connected components of the resulting disconnected
graph are associated with the clusters detected in the
original graph, based on their relative overlap (computed
through Eq. 97). Unstable vertices end up in components

71

73

FIG. 29 Application of the C-score by Lancichinetti et al. (Lancichinetti et al., 2009) to identify modules within subgraphs. In
(a) the subgraph consists of a compact cluster (generated with the LFR benchmark (Lancichinetti and Fortunato, 2009; Lanci-

74

limit of the �eld. Because of that, it is still impossible to
state which method (or subset of methods) is the most
reliable in applications, and people rely blindly on some
algorithms instead of others for reasons that have noth-
ing to do with the actual performance of the algorithms,
like. e.g. popularity (of the method or of its inventor).
This lack of control is also the main reason for the pro-
liferation of graph clustering techniques in the last few
years. Virtually in any paper, where a new method is
introduced, the part about testing consists in applying
the method to a small set of simple benchmark graphs,
whose cluster structure is fairly easy to recover. Because
of that, the freedom in the design of a clustering algo-
rithm is basically in�nite, whereas it is not clear what a

75

FIG. 30 Benchmark of Girvan and Newman. The three pictures correspond to zin = 15 (a), zin = 11 (b) and zin = 8 (c). In
(c) the four groups are hardly visible. Reprinted �gure with permission from Ref. (Guimer�a and Amaral, 2005). c2005 by the
Nature Publishing Group.

�a la Erd�os-R�enyi. Therefore, all vertices have approxi-
mately the same degree. Moreover, all communities have
exactly the same size by construction. These two features
are at odds with what is observed in graph representa-
tions of real systems. Degree distributions are usually
skewed, with many vertices with low degree coexisting
with a few vertices with high degree. A similar hetero-
geneity is also observed in the distribution of cluster sizes,
as we shall see in Section XVI. So, the planted ‘-partition
model is not a good description of a real graph with com-
munity structure. However, the model can be modi�ed to
account for the heterogeneity of degrees and community
sizes. A modi�ed version of the model, called Gaussian
random partition generator, was designed by Brandes et
al. (Brandes et al., 2003). Here the cluster sizes have a
Gaussian distribution, so they are not the same, although
they do not di�er much from each other. The hetero-
geneity of the cluster sizes introduces a heterogeneity in
the degree distribution as well, as the expected degree of
a vertex depends on the number of vertices of its clus-
ter. Still, the variability of degree and cluster size is not
appreciable. Besides, vertices of the same cluster keep
having approximately the same degree. A better job in
this direction has been recently done by Lancichinetti et
al. (LFR benchmark) (Lancichinetti et al., 2008). They
assume that the distributions of degree and community
size are power laws, with exponents �1 and �2, respec-
tively. Each vertex shares a fraction 1

76

77

comprises all vertices of the subgroups CAi and CBi , re-

78

lace, 1983) proposed the two indices

WI =
a11P

k n
X
k (nXk � 1)=

79

ison of proper partitions without overlap, even though
the values are close.

Meil�a (Meil�a, 2007) introduced the variation of infor-
mation

V (X ;Y) = H(XjY) +H(Y jX); (94)

which has some desirable properties with respect to the
normalized mutual information and other measures. In
particular, it de�nes a metric in the space of partitions
as it has the properties of distance. It is also a local
measure, i. e. the similarity of partitions di�ering only
in a small portion of a graph depends on the di�erences of
the clusters in that region, and not on the partition of the
rest of the graph. The maximum value of the variation
of information is log n, so similarity values for partitions
of graphs with di�erent size cannot be compared with
each other. For meaningful comparisons one could divide
V (X ;Y) by log n, as suggested by Karrer et al. (Karrer
et al., 2008).

A concept related to similarity is that of distance,
which indicates basically how many operations need to
be performed in order to transform a partition to an-
other. Gustafsson et al. de�ned two distance measures
for partitions (Gustafsson et al., 2006). They are both
based on the concept of meet of two partitions, which is
de�ned as

M =

nA[
i=1

nB[
j=1

h
Xi

\
Yj

i
: (95)

The distance measures are mmoved and mdiv. In both
cases they are determined by summing the distances of
X and Y from the meet M. For mmoved the distance of
X (Y) from the meet is the minimum number of elements
that must be moved between X and Y so that X (Y) and
M coincide (Gus�eld, 2002). For mdiv the distance of X
(Y) from the meet is the minimum number of divisions
that must be done in X (Y) so that X (Y) and M coin-
cide (Stanley, 1997). Such distance measures can easily
be transformed in similarity measures, like

Imoved = 1

81

and/or overlapping communities (Lancichinetti and For-
tunato, 2009) were carried out. Lancichinetti and For-
tunato also tested the methods on random graphs, to
check whether they are able to notice the absence of com-
munity structure. From the results of all tests, the In-
fomap method by Rosvall and Bergstrom (Rosvall and
Bergstrom, 2008) appears to be the best, but also the
algorithms by Blondel et al. (Blondel et al., 2008) and by
Ronhovde and Nussinov (Ronhovde and Nussinov, 2009)
have a good performance. These three methods are also
very fast, with a complexity which is essentially linear in
the system size, so they can be applied to large systems.
On the other hand, modularity-based methods (with the
exception of the method by Blondel et al.) have a rather
poor performance, which worsens for larger systems and
smaller communities, due to the well known resolution
limit of modularity (

82

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 34 Comparative evaluation of the performances of al-
gorithms to �nd communities in weighted graphs. Tests are
carried out on a weighted version of the benchmark of Girvan
and Newman. The two plots show how good the algorithms
are in terms of the precision and accuracy with which they
recover the planted partition of the benchmark. Precision in-
dicates how close the values of similarity between the planted
and the model partition are after repeated experiments with
the same set of parameters; accuracy indicates how close the
similarity values are to the ideal result (1) after repeated ex-
periments with the same set of parameters. The similarity
measure adopted here is based on the relative overlap of clus-
ters of Eq. 97. We see that the maximization of modularity
with extremal optimization (WEO) and the Potts model al-
gorithm (Potts) are both precise and accurate as long as the
weight of the inter-cluster edges winter remains lower than
the weight of the intra-cluster edges (winter < 1). Reprinted
�gures with permission from Ref. (Fan et al., 2007). c2007
by Elsevier.

scribed this benchmark in Section XV.A. It turns out
that the modularity landscape surveying method is able
to identify overlaps between communities, as long as the
fraction of overlapping vertices is small. Curiously, the
CPM, designed to �nd overlapping communities, has a
poor performance, as the overlapping vertices found by
the algorithm are in general di�erent from the overlap-
ping vertices of the planted partition of the benchmark.
The authors also remark that, if the overlap between two
clusters is not too small, it may be hard (for any method)
to recognize whether the clusters are overlapping or hi-
erarchically organized, i. e. loosely connected clusters
within a large cluster.

We close the section with some general remarks con-
cerning testing. We have seen that a testing procedure
requires two crucial ingredients: benchmark graphs with
built-in community structure and clustering algorithms
that try to recover it. Such two elements are not inde-
pendent, however, as they are both based on the concept
of community. If the underlying notions of community
for the benchmark and the algorithm are very di�erent,
one can hardly expect that the algorithm will do a good
job on the benchmark. Furthermore, there is a third el-
ement, i. e. the quality of a partition. All benchmarks
start from a situation in which communities are clearly
identi�ed, i. e. connected components of the graph, and
introduce some amount of noise, that eventually leads
to a scenario where clusters are hardly or no longer de-
tectable. It is then important to keep track of how the
quality of the natural partition of the benchmark worsens
as the amount of noise increases, in order to distinguish
con�gurations in which the graphs have a cluster struc-
ture, that an algorithm should then be able to resolve,
from con�gurations in which the noise prevails and the
natural clusters are not meaningful. Moreover, quality
functions are important to evaluate the performance of
an algorithm on graphs whose community structure is
unknown. Quality functions are strongly related to the
concept of community as well, as they are supposed to
evaluate the goodness of the clusters, so they require a
clear quantitative concept of what a cluster is. It is very
important for any testing framework to check for the mu-
tual dependencies between the benchmark, the quality
function used to evaluate partitions, and the clustering
algorithm to be tested. This issue has so far received very
little attention (Delling et al., 2007). Finally, empirical
tests are also very important, as one ultimately wishes to
apply clustering techniques to real graphs. Therefore, it
is crucial to collect more data sets of graphs whose com-
munity structure is known or deducible from information
on the vertices and their edges.

XVI. GENERAL PROPERTIES OF REAL CLUSTERS

What are the general properties of partitions and clus-
ters of real graphs? In many papers on graph clustering
applications to real systems are presented. In spite of the

83

FIG. 35 Cumulative distribution of community sizes for the
Amazon purchasing network. The partition is derived by
greedy modularity optimization. Reprinted �gure with per-
mission from Ref. (Clauset et al., 2004). c2004 by the Amer-
ican Physical Society.

variety of clustering methods that one could employ, in
many cases partitions derived from di�erent techniques
are rather similar to each other, so the general properties
of clusters do not depend much on the particular algo-
rithm used. The analysis of clusters and their properties
delivers a mesoscopic description of the graph, where the
communities, and not the vertices, are the elementary
units of the topology. The term mesoscopic is used be-
cause the relevant scale here lies between the scale of the
vertices and that of the full graph.

One of the �rst issues addressed was whether the com-
munities of a graph are usually about of the same size or
whether the community sizes have some special distribu-
tion. Most clustering techniques consistently �nd skewed
distributions of community sizes, with a tail described
with good approximation by a power law (at least, a
sizeable portion of the curve) with exponents in the range
between 1 and 3 (Clauset et al., 2004; Danon et al., 2007;
Newman, 2004a; Palla et al., 2005; Radicchi et al., 2004).
So, there seems to be no characteristic size for a commu-
nity: small communities usually coexist with large ones.
As an example, Fig. 35 shows the cumulative distribution
of community sizes for a recommendation network of the
online vendor Amazon.com. Vertices are products and
there is a connection between item A and B if B was
frequently purchased by bupd [(ok1ged [(if)]TJ/F11 9.962657.8531.555 0 Td [(A)]TJ/F8 9.9627.4721.555 0 n.c8ng)Rec62(smok1g-333(tok1g-3th)1(e)]65.325]TJ 0 -11.457 Tu2(comm)29(ulativ)28(1)-342(distribution)-531ion)-302(ton)-Reprinysica1 on to0united

84

FIG. 36 Analysis of communities in large real networks by
Leskovec et al. (Leskovec et al., 2008). (Left) Typical shape
of the network community pro�le plot (NCPP), showing how
the minimum conductance of subgraphs of size n varies with
n. The plot indicates that the \best" communities have a size
of about 100 vertices (minimum of the curve), whereas com-
munities of larger sizes are not well-de�ned. In the plot two
other NCPPs are shown: the one labeled Rewired network cor-
responds to a randomized version of the network, where edges
are randomly rewired by keeping the degree distribution; the
one labeled Bag of whiskers gives the minimum conductance
scores of clusters composed of disconnected pieces. (Right)
Scheme of the core-periphery structure of large social and in-
formation networks derived by Leskovec et al. based on the
results of their empirical analysis. Most of the vertices are in
a central core, which does not have a clear community struc-
ture, whereas the best communities, which are rather small,
are weakly connected to the core. Reprinted �gure with per-
mission from Ref. (Leskovec et al., 2008).

role of a vertex depends on the values of two indices, the
within-module degree and the participation ratio (though
other variables may be chosen, in principle). The within-
module degree zi of vertex i is de�ned as

zi =
�i � ��si

��si

; (98)

FIG. 37 Regions of the z � P plane de�ning the roles of
vertices in the modular structure of a graph, according to the
scheme of Guimer�a and Amaral (Guimer�a and Amaral, 2005;
Guimer�a and Amaral, 2005). Reprinted �gure with permis-
sion from Ref. (Guimer�a and Amaral, 2005). c2005 by the
Nature Publishing Group.

85

random graphs and Barab�asi-Albert (Barab�asi and Al-
bert, 1999) graphs (Section A.3), non-hubs are mostly
kinless vertices. In addition, if there are hubs, like in
Barab�asi-Albert graphs, they are kinless hubs. Kinless
hubs (non-hubs) vertices have less than half (one third) of
their neighbors inside any cluster, so they are not clearly
associated to a cluster. On real graphs, the topologi-
cal roles can be correlated to functions of vertices: in
metabolic networks, for instance, connector hubs, which
share most edges with vertices of other clusters than their
own, are often metabolites which are more conserved
across species than other metabolites, i. e. they have
an evolutionary advantage (Guimer�a and Amaral, 2005).

If communities are overlapping, one can explore other

86

ters in random graphs with the same expected degree
sequence as the original network. From the known func-
tional annotations of yeast genes one can see that the
modules usually group proteins with the same or con-
sistent biological functions. Indeed, in many cases, the
modules exactly coincide with known protein complexes.
The results appear robust if noise is introduced in the
system, to simulate the noise present in the experimental
data. Functional modules in yeast were also found by
Chen and Yuan (Chen and Yuan, 2006), who applied the
algorithm by Girvan and Newman with a modi�ed de�-
nition of edge betweenness (Section V.A). The standard
Girvan-Newman algorithm has proved to be reliable to
detect functional modules in PINs (Dunn et al., 2005).
The novelty of the work by Chen and Yuan is its focus
on weighted PINs, where the weights come from infor-
mation derived through microarray expression pro�les.
Weights add information about the system and should
lead to a more reliable modular structure. By knocking
out genes in the same structural cluster similar pheno-
types appeared, suggesting that the genes have similar

87

FIG. 38 Community structure of a social network of mobile
phone communication in Belgium. Dots indicate subcommu-
nities at the lower hierarchical level (with more than 100 peo-
ple) and are colored in a red-green scale to represent the level
of representation of the two main languages spoken in Belgium
(red for French and green for Dutch). Communities of the two
larger groups are linguistically homogeneous, with more than
85% of people speaking the same language. Only one commu-
nity (zoomed), which lies at the border between the two main
aggregations, has a more balanced distribution of languages.
Reprinted �gure with permission from Ref. (Blondel et al.,
2008). c2008 by IOP Publishing and SISSA.

communications between users of a Belgian phone oper-
ator (Blondel et al., 2008). The vertices of the graph are
2.6 millions and the edges are weighted by the cumulative

88

of modularity (Section VI.A.4): the results were further
re�ned through additional steps �a la Kernighan-Lin
(Section IV.A). One of the goals of the study was to
infer relationships between the online and o�ine lives
of the students. By using demographic information on
the students’ populations, one �nds that communities
are organized by class year or by House (dormitory)
a�liation, depending on the university (Fig. 39). Yuta
et al. (Yuta et al., 2007) observed a gap in the commu-
nity size distribution of a friendship network extracted
from mixi (mixi.jp), the largest social networking site
in Japan (as of December 2006). Communities were
identi�ed with the fast greedy modularity optimization
by Clauset et al. (Clauset et al., 2004). The gap occurs

89

FIG. 40 Map of science derived from a clustering analysis of a citation network comprising more than 6000 journals. Reprinted
�gure with permission from Ref. (Rosvall and Bergstrom, 2008). c2008 by the National Academy of Science of the USA.

Zhang et al. analyzed networks of legislation cospon-
sorship, in which vertices are legislators and two legisla-
tors are linked if they support at least one common bill.
Communities, identi�ed with a modi�cation of Newman’s
spectral optimization of modularity (Section VI.A.4), are
correlated with party a�liation, but also with geography
and committee memberships of the legislators.

91

random graphs have no communities. The null model
of modularity (Section III.C.2), by far the most popu-
lar, comprises all graphs with the same expected degree
sequence of the original graph and random rewiring of
edges. This class of graphs is characterized, by construc-
tion, by the fact that any vertex can be linked to any
other, as long as the constraint on the degree sequence
is satis�ed. But this is by no means the only possibility.
A community can be generically de�ned as a subgraph
whose vertices have a higher probability to be connected
to the other vertices of the subgraph than to external
vertices. The planted

93

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������
���������
���������

���������
���������
���������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����������
����������
����������
����������

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�

FIG. 41 A sample graph with seven vertices and seven edges.

In many real examples, graphs are weighted, i. e. a real
number is associated to each of the edges. Graphs do not
include loops, i. e. edges connecting a vertex to itself, nor
multiple edges, i. e. several edges joining the same pair of

94

two disjoint subsets V1 and V2, or classes, and every edge
joins a vertex of

95

Pajek

Pajek

FIG. 42 Basic models of complex networks. (Top) Erd�os-
R�enyi random graph with 100 vertices and a link probability
p = 0:02. (Center) Small world graph �a la Watts-Strogatz,
with 100 vertices and a rewiring probability p = 0:1. (Bot-
tom) Barab�asi-Albert scale-free network, with 100 vertices

96

Boccaletti et al., 2006; Mendes and Dorogovtsev, 2003;

97

Hwang, 2006, Phys. Rep. 424(4-5), 175.
Boettcher, S., and A. G. Percus, 2001, Phys. Rev. Lett. 86,

5211.
Bollobas, B., 1998, Modern Graph Theory (Springer Verlag,

New York, USA).
Bomze, I. M., M. Budinich, P. M. Pardalos, and M. Pelillo,

http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3255
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3255
http://www.hss.caltech.edu/~{}jernej/netcommunity.pdf
http://www.hss.caltech.edu/~{}jernej/netcommunity.pdf

98

99

80(1), 016114.
Good, B. H., Y. de Montjoye, and A. Clauset, 2009, eprint

arXiv:0910.0165.
Gori, M., and A. Pucci, 2007, in IJCAI’07: Proceedings of the

20th international joint conference on Arti�cal intelligence

100

ference on Knowledge discovery and data mining (ACM,
New York, NY, USA), pp. 611{617.

Kumpula, J. M., M. Kivel�a, K. Kaski, and J. Saram�aki, 2008,
Phys. Rev. E 78(2), 026109.

Kumpula, J. M., J. Saram�aki, K. Kaski, and J. Kert�esz,
2007a, in Noise and Stochastics in Complex Systems and
Finance, volume 6601 of SPIE Conference Series, p.
660116.

Kumpula, J. M., J. Saram�aki, K. Kaski, and J. Kert�esz,
2007b, Eur. Phys. J. B 56, 41.

Kuramoto, Y., 1984, Chemical Oscillations, Waves and Tur-
bulence (Springer-Verlag, Berlin, Germany).

Lambiotte, R., J. . Delvenne, and M. Barahona, 2008, eprint
arXiv:0812.1770.

Lancichinetti, A., and S. Fortunato, 2009, Phys. Rev. E 80(1),
016118.

Lancichinetti, A., and S. Fortunato, 2009, Phys. Rev. E 80(1),
056117.

Lancichinetti, A., S. Fortunato, and J. Kertesz, 2009, New J.
Phys. 11(3), 033015.

Lancichinetti, A., S. Fortunato, and F. Radicchi, 2008, Phys.
Rev. E 78(4), 046110.

Lancichinetti, A., F. Radicchi, and J. J. Ramasco, 2009,
eprint arXiv:0907.3708.

Lanczos, C., 1950, J. Res. Natl. Bur. Stand. 45, 255.
Latapy, M., and P. Pons, 2005, Lect. Notes Comp. Sci. 3733,

284.
Latora, V., and M. Marchiori, 2001, Phys. Rev. Lett. 87(19),

198701.
Lehmann, S., and L. K. Hansen, 2007, Eur. Phys. J. B 60,

83.
Lehmann, S., M. Schwartz, and L. K. Hansen, 2008, Phys.

Rev. E 78(1), 016108.
Leicht, E. A., and M. E. J. Newman, 2008, Phys. Rev. Lett.

100(11), 118703.
Leskovec, J., L. Backstrom, R. Kumar, and A. Tomkins, 2008,

in KDD ’08: Proceeding of the 14th ACM SIGKDD inter-
national conference on Knowledge discovery and data min-
ing (ACM, New York, NY, USA), pp. 462{470.

Leskovec, J., J. Kleinberg, and C. Faloutsos, 2005, in KDD
’05: Proceedings of the eleventh ACM SIGKDD interna-
tional conference on Knowledge discovery in data mining
(ACM, New York, NY, USA), pp. 177{187.

Leskovec, J., K. J. Lang, A. Dasgupta, and M. W. Mahoney,
2008, eprint arXiv:0810.1355.

Leung, I. X. Y., P. Hui, P. Li�o, and J. Crowcroft, 2009, Phys.
Rev. E 79(6), 066107.

Lewis, A. C. F., N. S. Jones, M. A. Porter, and C. M. Deane,
2009, eprint arXiv:0904.0989.

Li, D., I. Leyva, J. A. Almendral, I. Sendi~na-Nadal, J. M.
Buld�u, S. Havlin, and S. Boccaletti, 2008a, Phys. Rev. Lett.
101(16), 168701.

Li, Z., S. Zhang, R.-S. Wang, X.-S. Zhang, and L. Chen,
2008b, Phys. Rev. E 77(3), 036109.

Liben-Nowell, D., and J. Kleinberg, 2003, in CIKM ’03: Pro-
ceedings of the twelfth international conference on Informa-
tion and knowledge management (ACM, New York, NY,
USA), pp. 556{559.

Lin, Y.-R., Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng,
2008, in WWW ’08: Proceedings of the 17th international
conference on the World Wide Web (ACM, New York, NY,
USA), pp. 685{694.

Liu, X., D. Li, S. Wang, and Z. Tao, 2007, in ICCS ’07:
Proceedings of the 7th international conference on Compu-

tational Science, Part II (Springer-Verlag, Berlin, Heidel-
berg), pp. 657{664.

Lloyd, S., 1982, IEEE Trans. Inf. Theory 28(2), 129.
Long, B., X. Xu, Z. Zhang, and P. S. Yu, 2007, in ICDM ’07:

Proceedings of the 2007 Seventh IEEE International Con-
ference on Data Mining (IEEE Computer Society, Wash-
ington, DC, USA), pp. 232{241.

Lov�asz, L., 1993, Combinatorial Problems and Exercises
(North-Holland, Amsterdam, The Netherlands).

Luccio, F., and M. Sami, 1969, IEEE Trans. Circuit Th. CT
16, 184.

Luce, R. D., 1950, Psychometrika 15(2), 169.
Luce, R. D., and A. D. Perry, 1949, Psychometrika 14(2), 95.
 Luczak, T., 1992, in Proceedings of the Symposium on Ran-

dom Graphs, Pozna�n 1989 (John Wiley & Sons, New York,
USA), pp. 165{182.

Lusseau, D., 2003, Proc. Royal Soc. London B 270, S186.
von Luxburg, U., 2006, A tutorial on spectral clustering, Tech-

nical Report 149, Max Planck Institute for Biological Cy-
bernetics.

Mackay, D. J. C., 2003, Information Theory, Inference, and
Learning Algorithms (Cambridge University Press, Cam-
bridge, UK).

MacQueen, J. B., 1967, in Proc. of the �fth Berkeley Sym-
posium on Mathematical Statistics and Probability, edited

101

(Kluwer Academic Press, Norwell, USA).
Mitrovi�c, M., and B. Tadi�c, 2009, Phys. Rev. E 80(2), 026123.
Mokken, R. J., 1979, Qual. Quant. 13(2), 161.
Molloy, M., and B. Reed, 1995, Random Struct. Algor. 6, 161.
Moody, J., and D. R. White, 2003, Am. Sociol. Rev. 68(1),

103.
Mu�, S., F. Rao, and A. Caisch, 2005, Phys. Rev. E 72(5),

056107.
Mungan, M., and J. J. Ramasco, 2008, eprint

arXiv:0809.1398.
Nadler, B., S. Lafon, R. R. Coifman, and I. G. Kevrekidis,

2006, Applied and Computational Harmonic Analysis
21(1), 113.

Narasimhamurthy, A., D. Greene, N. Hurley, and P. Cun-
ningham, 2008, in Proc. 19th Irish Conference on Arti�cial
Intelligence and Cognitive Science (AICS’08).

Nelson, D. L., C. L. McEvoy, and T. A. Schreiber, 1998, The
university of south orida word association, rhyme, and
word fragment norms.

Nepusz, T., A. Petr�oczi, L. N�egyessy, and F. Bazs�o, 2008,
Phys. Rev. E 77(1), 016107.

Newman, M. E. J., 2001, Proc. Nat. Acad. Sci. USA 98(2),
404.

Newman, M. E. J., 2003, SIAM Rev. 45(2), 167.
Newman, M. E. J., 2004, Phys. Rev. E 70(5), 056131.
Newman, M. E. J., 2004a, Eur. Phys. J. B 38, 321.
Newman, M. E. J., 2004b, Phys. Rev. E 69(6), 066133.
Newman, M. E. J., 2005, Soc. Netw. 27, 39.
Newman, M. E. J., 2006a, Phys. Rev. E 74(3), 036104.
Newman, M. E. J., 2006b, Proc. Natl. Acad. Sci. USA 103,

8577.
Newman, M. E. J., and T. Barkema, 1999, Monte Carlo Meth-

ods in Statistical Physics (Oxford University Press, Oxford,
UK).

Newman, M. E. J., and M. Girvan, 2004, Phys. Rev. E 69(2),
026113.

Newman, M. E. J., and E. A. Leicht, 2007, Proc. Natl. Acad.
Sci. USA 104, 9564.

Ng, A. Y., M. I. Jordan, and Y. Weiss, 2001, in Advances in
Neural Information Processing Systems, edited by T. G. Di-
etterich, S. Becker, and Z. Ghahramani (MIT Press, Cam-

102

Ravasz, E., and A.-L. Barab�asi, 2003, Phys. Rev. E 67(2),
026112.

Ravasz, E., A. L. Somera, D. A. Mongru, Z. N. Oltvai, and
A.-L. Barab�asi, 2002, Science 297(5586), 1551.

Reddy, K. P., M. Kitsuregawa, P. Sreekanth, and S. S. Rao,
2002, in DNIS ’02: Proceedings of the Second International
Workshop on Databases in Networked Information Systems
(Springer-Verlag, London, UK), pp. 188{200.

Reichardt, J., and S. Bornholdt, 2004, Phys. Rev. Lett.
93(21), 218701.

Reichardt, J., and S. Bornholdt, 2006a, Phys. Rev. E 74(1),
016110.

Reichardt, J., and S. Bornholdt, 2006b, Physica D 224, 20.
Reichardt, J., and S. Bornholdt, 2007, J. Stat. Mech. P06016.
Reichardt, J., and S. Bornholdt, 2007, Phys. Rev. E 76(1),

015102 (R).
Reichardt, J., and M. Leone, 2008, Phys. Rev. Lett. 101(7),

078701.
Reichardt, J., and D. R. White, 2007, Eur. Phys. J. B 60,

217.
Ren, W., G. Yan, X. Liao, and L. Xiao, 2009, Phys. Rev. E

79(3), 036111.
Rhodes, C. J., and E. M. J. Keefe, 2007, J. Oper. Res. Soc.

58(12), 1605.
Rice, S. A., 1927, Am. Polit. Sci. Rev. 21, 619.
Richardson, T., P. J. Mucha, and M. A. Porter, 2009, Phys.

Rev. E 80(3), 036111.
Rissanen, J., 1978, Automatica 14, 465.
Rives, A. W., and T. Galitski, 2003, Proc. Natl. Acad. Sci.

USA 100(3), 1128.
Rodrigues, F. A., G. Travieso, and L. da F. Costa, 2007, Int.

J. Mod. Phys. C 18, 937.
Ronhovde, P., and Z. Nussinov, 2008, eprint arXiv:0803.2548.
Ronhovde, P., and Z. Nussinov, 2009, Phys. Rev. E 80(1),

016109.
Rosvall, M., D. Axelsson, and C. T. Bergstrom, 2009, eprint

arXiv:0906.1405.
Rosvall, M., and C. T. Bergstrom, 2007, Proc. Natl. Acad.

Sci. USA 104, 7327.
Rosvall, M., and C. T. Bergstrom, 2008, eprint

arXiv:0812.1242.
Rosvall, M., and C. T. Bergstrom, 2008, Proc. Natl. Acad.

Sci. USA 105, 1118.
Rowicka, M., and A. Kudlicki, 2004, in Bayesian Inference

and Maximum Entropy Methods in Science and Engineer-

citeseer.ist.psu.edu/saerens04principal.html
citeseer.ist.psu.edu/saerens04principal.html

	 Contents
	I Introduction
	II Communities in real-world networks
	III Elements of Community Detection
	A Computational complexity
	B Communities
	1 Basics
	2 Local definitions
	3 Global definitions
	4 Definitions based on vertex similarity

	C Partitions
	1 Basics
	2 Quality functions: modularity

	IV Traditional methods
	A Graph partitioning
	B Hierarchical clustering
	C Partitional clustering
	D Spectral clustering

	V Divisive algorithms
	A The algorithm of Girvan and Newman
	B Other methods

	VI Modularity-based methods
	A Modularity optimization
	1 Greedy techniques
	2 Simulated annealing
	3 Extremal optimization
	4 Spectral optimization
	5 Other optimization strategies

	B Modifications of modularity
	C Limits of modularity

	VII Spectral Algorithms
	VIII Dynamic Algorithms
	A Spin models
	B Random walk
	C Synchronization

	IX Methods based on statistical inference
	A Generative models
	B Blockmodeling, model selection and information theory

	X Alternative methods
	XI Methods to find overlapping communities
	A Clique percolation
	B Other techniques

	XII Multiresolution methods and cluster hierarchy
	A Multiresolution methods
	B Hierarchical methods

	XIII Detection of dynamic communities
	XIV Significance of clustering
	XV Testing Algorithms
	A Benchmarks
	B Comparing partitions: measures
	C Comparing algorithms

	XVI General properties of real clusters
	XVII Applications on real-world networks
	A Biological networks
	B Social networks
	C Other networks

	XVIII Outlook
	A Elements of Graph Theory
	1 Basic Definitions
	2 Graph Matrices
	3 Model graphs

	 References

