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A number of recent studies have focused on the statistical prop-
erties of networked systems such as social networks and the
Worldwide Web. Researchers have concentrated particularly on a
few properties that seem to be common to many networks: the
small-world property, power-law degree distributions, and net-
work transitivity. In this article, we highlight another property that
is found in many networks, the property of community structure,
in which network nodes are joined together in tightly knit groups,
between which there are only looser connections. We propose a
method for detecting such communities, built around the idea of
using centrality indices to find community boundaries. We test our
method on computer-generated and real-world graphs whose
community structure is already known and find that the method
detects this known structure with high sensitivity and reliability.
We also apply the method to two networks whose community
structure is not well known—a collaboration network and a food
web—and find that it detects significant and informative commu-
nity divisions in both cases.

Many systems take the form of networks, sets of nodes or
vertices joined together in pairs by links or edges (1).

Examples include social networks (2–4) such as acquaintance
networks (5) and collaboration networks (6), technological
networks such as the Internet (7), the Worldwide Web (8, 9), and
power grids (4, 5), and biological networks such as neural
networks (4), food webs (10), and metabolic networks (11, 12).
Recent research on networks among mathematicians and phys-



increasingly large components (connected subsets of vertices),
which are taken to be the communities. Because the components
are properly nested, they all can be represented by using a tree
of the type shown in Fig. 2, in which the lowest level at which two
vertices are connected represents the strength of the edge that
resulted in their first becoming members of the same commu-
nity. A ‘‘slice’’ through this tree at any level gives the commu-
nities that existed just before an edge of the corresponding



1. Calculate the betweenness for all edges in the network.



interesting is that it incorporates a known community structure.
The teams are divided into conferences containing around 8–12
teams each. Games are more frequent between members of the
same conference than between members of different confer-
ences, with teams playing an average of about seven intracon-
ference games and four interconference games in the 2000
season. Interconference play is not uniformly distributed; teams
that are geographically close to one another but belong to
different conferences are more likely to play one another than
teams separated by large geographic distances.

Applying our algorithm to this network, we find that it
identifies the conference structure with a high degree of success
(Fig. 5). Almost all teams are correctly grouped with the other
teams in their conference. There are a few independent teams
that do not belong to any conference—these tend to be grouped
with the conference with which they are most closely associated.
The few cases in which the algorithm seems to fail actually

correspond to nuances in the scheduling of games. For example,
the Sunbelt Conference is broken into two pieces and grouped
with members of the Western Athletic Conference. This happens
because the Sunbelt teams played nearly as many games against
Western Athletic teams as they did against teams in their own
conference. They also played quite a large fraction of their
interconference games against Mid-American teams. Naturally,
our algorithm fails in cases like this where the network structure
genuinely does not correspond to the conference structure. In all
other respects, however, it performs remarkably well.

Fig. 4. (a) The friendship network from Zachary’s karate club study (26) as
described in the text. Nodes associated with the club administrator’s faction
are drawn as circles, those associated with the instructor’s faction are drawn
as squares. (b) Hierarchical tree showing the complete community structure
for the network calculated by using the algorithm presented in this article. The
initial split of the network into two groups is in agreement with the actual
factions observed by Zachary, with the exception that node 3 is misclassified.
(c) Hierarchical tree calculated by using edge-independent path counts, which
fails to extract the known community structure of the network.

Fig. 5. Hierarchical tree for the network reflecting the schedule of regular-



Applications
In the previous section we tested our algorithm on a number of
networks for which the community structure was known before-
hand. The results indicate that our algorithm is a sensitive and
accurate method for extracting community structure from both
real and artificial networks. In this section, we apply our method
to two more networks for which the structure is not known and
show that in these cases it can help us to understand the make-up
of otherwise complex and tangled datasets. Our first example is
a collaboration network of scientists; our second is a food web
of marine organisms in the Chesapeake Bay.

Collaboration Network. We have applied our community-finding
method to a collaboration network of scientists at the Santa Fe
Institute, an interdisciplinary research center in Santa Fe, New
Mexico (and current academic home to both authors of this
article). The 271 vertices in this network represent scientists in
residence at the Santa Fe Institute during any part of calendar
year 1999 or 2000 and their collaborators. An edge is drawn
between a pair of scientists if they coauthored one or more
articles during the same time period. The network includes all
journal and book publications by the scientists involved, along
with all papers that appeared in the institute’s technical reports
series. On average, each scientist coauthored articles with ap-
proximately five others.

In Fig. 6 we illustrate the results from the application of our
algorithm to the largest component of the collaboration graph
(which consists of 118 scientists). Vertices are drawn as different
shapes according to the primary divisions detected. We find that
the algorithm splits the network into a few strong communities,
with the divisions running principally along disciplinary lines.
The community indicated by diamonds is the least well defined
and represents a group of scientists using agent-based models to
study problems in economics and traffic f low. The algorithm
further divides this group into smaller components that corre-

spond roughly with the split between economics and traffic. The
community represented by circles is comprised of a group of
scientists working on mathematical models in ecology and forms
a fairly cohesive structure, as evidenced by the fact that the
algorithm does not break it into smaller components to any
significant extent. The largest community, indicated by squares
of various shades, represents a group working primarily in



in mind, and it is possible that it may not perform as well on
dense networks.

Conclusions
In this article we have investigated community structure in
networks of various kinds, introducing a method for detecting
such structure. Unlike previous methods that focus on finding


