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One should view the vector (1) not just as a list, but as a graph 
with each value sn  residing at node .vn

Figure 1 shows examples of graph signals. Finite periodic 
time series, studied by finite-time DSP [19], [21], are indexed by 
directed cyclic graphs, such as the graph in Figure 1(a). Each 
node corresponds to a time sample; all edges are directed and 
have the same weight 1, reflecting the causality of time series; 
and the edge from the last to the first node reflects the periodic-
ity assumption. Data collected by sensor networks is another 
example of graph signals: sensor measurements form a graph 
signal indexed by the sensor network graph, such as the graph 
in Figure 1(b). Each graph node is a sensor, and edges connect 
closely located sensors. Graph signals also arise in the World 
Wide Web: for instance, Web site features (topic, view count, rel-
evance) are graph signals indexed by graphs formed by hyper-
link references, such as the graph in Figure 1(c). Each node 
represents a Web site, and directed edges correspond to hyper-
links. Finally, graph signals are collected in social networks, 
where characteristics of individuals (opinions, preferences, 
demographics) form graph signals on social graphs, such as the 
graph in Figure 1(d). Nodes of the social graph represent indi-
viduals, and edges connect people based on their friendship, col-
laboration, or other relations. Edges can be directed (such as 
follower relations on Twitter) or undirected (such as friendship 
on Facebook or collaboration ties in publication databases). 

Graph Shift
In DSP, a signal shift, implemented as a time delay, is a basic 
nontrivial operation performed on a signal. A delayed finite peri-
odic time series of length N  is .ss modn n N1= -u  Using the vector 
notation (1), the shifted signal is written as 

	 ,s ss CsN
T

0 1f= =-u u u6 @ � (2)

where C  is the N N#  cyclic shift matrix (only nonzero entries 
are shown) 
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Note that (3) is precisely the adjacency matrix of the periodic 
time series graph in Figure 1(a). 

DSPG extends the concept of shift to general graphs by defin-
ing the graph shift as a local operation that replaces a signal 
value sn  at node vn  by a linear combination of the values at the 
neighbors of vn  weighted by their edge weights: 
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Observe that the circulant matrix ( )h C  in (11) is obtained by 
substituting the time shift matrix (3) for z 1-  in the filter 
z-transform (7). In finite-time DSP, this substitution establishes 
a surjective (onto) mapping from the space of LSI filters and the 
space of N N#  circulant matrices. 

DSPG extends the concept of filters to general graphs. Simi-
larly to the extension of the time shift (2) to the graph shift (5), 
filters (11) are generalized to graph filters as polynomials in the 
graph shift [17], and all LSI graph filters have the form 
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In analogy with (10), the graph filter output is given by 

	 ( ) .hs A s=u � (13)

The output can also be computed using the graph z-transform 
that represents graph filters (12) as 
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and graph signals (1) as polynomials ( ) ( ),s z s b zn nn
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graph Fourier basis, such as singular vectors or eigenvectors of 
the Laplacian matrix. These choices are consistent with DSPG , 
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generalize data analysis techniques to diverse data sets, we 
need a common representation framework for data sets and 
their structure. 

The latter challenge of data diversity is addressed in DSPG by 
representing data set structure with graphs and quantifying 
data into graph signals. Graphs provide a versatile data abstrac-
tion for multiple types of data, including sensor network mea-
surements, text documents, image and video databases, social 
networks, and others. Using this abstraction, data analysis 
methods and tools can be developed and applied to data sets of 
a different nature. 

For efficient big data analysis, the challenges of data vol-
ume and velocity must be addressed as well. In particular, the 
fundamental signal processing operations of filtering and 
spectral decomposition may be prohibitively expensive for 
large data sets both in the amount of required computations 
and memory demands. 

Recall that processing a graph signal (1) with a graph filter 
(16) requires L multiplications by a N N#  graph shift matrix 
.A  For a general matrix, this computation requires ( )O LN2  

arithmetic operations (additions and multiplications) [26]. 
When A  is sparse and has on average K  nonzero entries in 
every row, graph filtering requires O LNK^ h operations. In 
addition, graph filtering also requires access to the entire 
graph signal in memory. Similarly, computation of the graph 
Fourier transform (18) requires ( )O N2  operations and access 
to the entire signal in memory. Moreover, the eigendecomposi-
tion of the matrix A  requires additional ( )O N3  operations and 
memory access to the entire N N#  matrix .A  Note that graph 
filtering can also be performed in the spectral domain with 
( )O N2  operations using the graph convolution theorem (21), 

but it also requires the initial eigendecomposition of .A
Degree heterogeneity in graphs with heavily skewed degree 

distributions, such as scale-free graphs, presents an additional 
challenge. Graph filtering (16) requires iterative weighted aver-
aging over each vertex’s neighbors, and for vertices with large 
degrees this process takes significantly longer than for vertices 
with small degrees. In this case, load balancing through smart 
distribution of vertices between computational nodes is 
required to avoid a computation bottleneck. 

For very large data sets, algorithms with quadratic and 
cubic arithmetic cost are not acceptable. Moreover, computa-
tions that require access to the entire data sets are ill suited for 
large data sizes and lead to performance bottlenecks, since 
memory access is orders of magnitude slower than arithmetic 
computations. This problem is exacerbated by the fact that 
large data sets often do not fit into main memory or even local 
disk storage of a single machine, and must be stored and 
accessed remotely and processed with distributed systems. 

Fifty years ago, the invention of the famous fast Fourier 
transform algorithm by Cooley and Tukey [27], as well as many 
other algorithms that followed (see [28] and [29] and references 
therein), dramatically reduced the computational cost of the 
discrete Fourier transform by using suitable properties of the 
structure of time signals, and made frequency analysis and 

filtering of very large signals practical. Similarly, in this article, 
we identify and discuss properties of certain data representation 
graphs that lead to more efficient implementations of DSPG 

operations for big data. A suitable graph model is provided by 
product graphs discussed in the next section. 

Product Graphs
Consider two graphs ( , )G AV1 1 1=  and ( , )G AV2 2 2=  with 
| | NV1 1=  and | | NV2 2=  nodes, respectively. The product 
graph, denoted by ,G  of G1  and G2  is the graph 

	 ( , ),G G G AV1 2G= = G � (22)

with | | N NV 1 2=  nodes and an appropriately defined 
N N N N1 2 1 2#  adjacency matrix AG  [30], [31]. In particular, 
three commonly studied graph products are the Kronecker, 
Cartesian, and strong products. 

For the Kronecker graph product, denoted as ,G G G1 27=  
the adjacency matrix is obtained by the matrix Kronecker product 
of adjacency matrices A1  and :A2  

	 .A A A1 27=7 � (23)

Recall that the Kronecker product of matrices [ ]bB mn !=

CM N#  and C CK L! #  is a KM LN#  matrix with block structure
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Hence, the graph Fourier transform associated with a Cartesian 
product graph is given by the matrix Kronecker product of the 
graph Fourier transforms for its factor graphs:

	 ( ) ,F V V V V F F1 2
1

1
1

2
1

1 27 7 7= = =#
- - - � (31)

and the spectrum is given by the element-wise summation of 
the spectra of the smaller graphs: ,, ,n m1 2m m+  n N0 11#  and 

.m N0 21#  
Reusing the property (29), (31) can be written as 

( ) ( )F F F F I I FN N1 2 1 22 17 7 7= =#  and efficiently implemented 
using parallelization and vectorization techniques. Moreover, 
the computation of the eigendecomposition (30) is replaced 
with finding the eigendecomposition of the shift matrices A1  
and ,A2  which reduces the computation cost from ( )O N3  to 
( ) .O N N1

3
2
3+  For instance, when , ,N N N1 2 .  the computa-

tional cost of the eigendecomposition is reduced by a factor 
.N N  Hence, for a graph with a million vertices, the cost of 

computing the eigendecomposition is reduced by a factor of 
more than ,3 104#  and for a graph with a billion vertices, the 
cost reduction factor is over .3 1013#

The same improvements apply to the Kronecker and strong 
matrix products, since the eigendecomposition of the corre-
sponding shift matrices is 
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Relation to Existing Approaches
The instantiation of DSPG for product graphs relates to existing 
approaches to complex data analysis that are not based on 
graphs but rather view data as multidimensional arrays [2]–[4]. 
Given a K-dimensional data set ,S CN N NK1 2! # # #f  the family of 
methods called canonical decomposition or parallel factor 
analysis searches for K  matrices ,M Ck

N Rk! #  ,k K1 # #  that 
provide an optimal approximation of the data set 
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that minimizes the error 
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Here, m ,k r  denotes the rth  column of matrix ,Mk  and &  
denotes the outer product of vectors. 

A more general approach, called Tucker decomposition, 
searches for K  matrices ,M Ck

N Rk k! #  ,k K1 # #  and a matrix 
C CR R RK1 2! # # #f  that provide an optimal approximation of the 
data set as 
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Tucker decomposition is also called a higher-order PCA or SVD, 
since it effectively extends these techniques from matrices to 
higher-order arrays. 

Decompositions (32) and (33) can be interpreted as signal com-
pression on product graphs. For simplicity of discussion, assume 
that K 2=  and consider a signal s CN N1 2!  that lies on a product 
graph (22) and corresponds to a 2-D signal ,S CN N1 2! #  so that 

,S s,n n n N n1 2 1 2 2= +  where n N0 i i1#  for , .i 1 2=  If matrices M1  
and M2  contain as columns, respectively, R1  and R2  eigenvectors 
of A1  and ,A2  then the decomposition (33) represents a lossy com-
pression of the graph signal in the frequency domain, a widely used 
compression technique in signal processing [21], [24]. 

Example Application
As a motivational application example of DSPG on product 
graphs, we consider data compression. For the testing data set, 
we use the set of daily temperature measurements collected by 
150 weather stations across the United States [17] during the 
year 2002. Figure 1(b) shows the measurements from one day 
(1 December 2002), as well as the sensor network graph. The 
graph is constructed by connecting each sensor to eight of its 
nearest neighbors with undirected edges with weights given by 
[17,  eq. (29)]. As illustrated by the example in Figure 2(b), such 

a data set can be described by a product of the sensor network 
graph and the time series graphs. We use the sensor network 
graph in Figure 1(b) with N 1501 =  nodes and the time series 
graph in Figure 1(a) with N 3652 =  nodes. 

The compression is performed in the frequency domain. We 
compute the Fourier transform (31) of the data set, keep only C 
spectrum coefficients with largest magnitudes and replace others 
with zeros, and perform the inverse graph Fourier transform on 
the resulting coefficients. This is a lossy compression scheme, 
with the compression error given by the norm of the difference 
between the original data set and the reconstructed one normal-
ized by the norm of the original data set. Note that, while the 
,




