
	

	 IEEE SIGNAL PROCESSING MAGAZINE  [82]  SEPTEMBER 2014

	 .s s ss CN
T N

0 1 1f != -6 @ � (1)

One should view the vector (1) not just as a list, but as a graph
with each value sn residing at node .vn

Figure 1 shows examples of graph signals. Finite periodic
time series, studied by finite-time DSP [19], [21], are indexed by
directed cyclic graphs, such as the graph in Figure 1(a). Each
node corresponds to a time sample; all edges are directed and
have the same weight 1, reflecting the causality of time series;
and the edge from the last to the first node reflects the periodic-
ity assumption. Data collected by sensor networks is another
example of graph signals: sensor measurements form a graph
signal indexed by the sensor network graph, such as the graph
in Figure 1(b). Each graph node is a sensor, and edges connect
closely located sensors. Graph signals also arise in the World
Wide Web: for instance, Web site features (topic, view count, rel-
evance) are graph signals indexed by graphs formed by hyper-
link references, such as the graph in Figure 1(c). Each node
represents a Web site, and directed edges correspond to hyper-
links. Finally, graph signals are collected in social networks,
where characteristics of individuals (opinions, preferences,
demographics) form graph signals on social graphs, such as the
graph in Figure 1(d). Nodes of the social graph represent indi-
viduals, and edges connect people based on their friendship, col-
laboration, or other relations. Edges can be directed (such as
follower relations on Twitter) or undirected (such as friendship
on Facebook or collaboration ties in publication databases).

Graph Shift
In DSP, a signal shift, implemented as a time delay, is a basic
nontrivial operation performed on a signal. A delayed finite peri-
odic time series of length N is .ss modn n N1= -u Using the vector
notation (1), the shifted signal is written as

	 ,s ss CsN
T

0 1f= =-u u u6 @ � (2)

where C is the N N# cyclic shift matrix (only nonzero entries
are shown)

	 .
1

1

1

C
j

=

R

T

S
S
S
S
S

V

X

W
W
W
W
W

� (3)

Note that (3) is precisely the adjacency matrix of the periodic
time series graph in Figure 1(a).

DSPG extends the concept of shift to general graphs by defin-
ing the graph shift as a local operation that replaces a signal
value sn at node vn by a linear combination of the values at the
neighbors of vn weighted by their edge weights:

	 .

a j
 / T 1 _ 5 1 T f
 - 5 0 r 0 . 2 3 2 5 1 0 2 . 0 0 0 3
 / T 1 _ 3 t . n
T

	 IEEE SIGNAL PROCESSING MAGAZINE  [83]  SEPTEMBER 2014

Observe that the circulant matrix ()h C in (11) is obtained by
substituting the time shift matrix (3) for z 1- in the filter
z-transform (7). In finite-time DSP, this substitution establishes
a surjective (onto) mapping from the space of LSI filters and the
space of N N# circulant matrices.

DSPG extends the concept of filters to general graphs. Simi-
larly to the extension of the time shift (2) to the graph shift (5),
filters (11) are generalized to graph filters as polynomials in the
graph shift [17], and all LSI graph filters have the form

	 () .h hA A
L

0

1

= ,

,

,

=

-

/ � (12)

In analogy with (10), the graph filter output is given by

	 () .hs A s=u � (13)

The output can also be computed using the graph z-transform
that represents graph filters (12) as

	 () ,h z h z
L

1

0

1

= ,

,

,-

=

-
-/ � (14)

and graph signals (1) as polynomials () (),s z s b zn nn
N1 1

0
1=- -

=

-

1) as polynomials

	 IEEE SIGNAL PROCESSING MAGAZINE  [84]  SEPTEMBER 2014

graph Fourier basis, such as singular vectors or eigenvectors of
the Laplacian matrix. These choices are consistent with DSPG ,

	 IEEE SIGNAL PROCESSING MAGAZINE  [85]  SEPTEMBER 2014

generalize data analysis techniques to diverse data sets, we
need a common representation framework for data sets and
their structure.

The latter challenge of data diversity is addressed in DSPG by
representing data set structure with graphs and quantifying
data into graph signals. Graphs provide a versatile data abstrac-
tion for multiple types of data, including sensor network mea-
surements, text documents, image and video databases, social
networks, and others. Using this abstraction, data analysis
methods and tools can be developed and applied to data sets of
a different nature.

For efficient big data analysis, the challenges of data vol-
ume and velocity must be addressed as well. In particular, the
fundamental signal processing operations of filtering and
spectral decomposition may be prohibitively expensive for
large data sets both in the amount of required computations
and memory demands.

Recall that processing a graph signal (1) with a graph filter
(16) requires L multiplications by a N N# graph shift matrix
.A For a general matrix, this computation requires ()O LN2

arithmetic operations (additions and multiplications) [26].
When A is sparse and has on average K nonzero entries in
every row, graph filtering requires O LNK^ h operations. In
addition, graph filtering also requires access to the entire
graph signal in memory. Similarly, computation of the graph
Fourier transform (18) requires ()O N2 operations and access
to the entire signal in memory. Moreover, the eigendecomposi-
tion of the matrix A requires additional ()O N3 operations and
memory access to the entire N N# matrix .A Note that graph
filtering can also be performed in the spectral domain with
()O N2 operations using the graph convolution theorem (21),

but it also requires the initial eigendecomposition of .A
Degree heterogeneity in graphs with heavily skewed degree

distributions, such as scale-free graphs, presents an additional
challenge. Graph filtering (16) requires iterative weighted aver-
aging over each vertex’s neighbors, and for vertices with large
degrees this process takes significantly longer than for vertices
with small degrees. In this case, load balancing through smart
distribution of vertices between computational nodes is
required to avoid a computation bottleneck.

For very large data sets, algorithms with quadratic and
cubic arithmetic cost are not acceptable. Moreover, computa-
tions that require access to the entire data sets are ill suited for
large data sizes and lead to performance bottlenecks, since
memory access is orders of magnitude slower than arithmetic
computations. This problem is exacerbated by the fact that
large data sets often do not fit into main memory or even local
disk storage of a single machine, and must be stored and
accessed remotely and processed with distributed systems.

Fifty years ago, the invention of the famous fast Fourier
transform algorithm by Cooley and Tukey [27], as well as many
other algorithms that followed (see [28] and [29] and references
therein), dramatically reduced the computational cost of the
discrete Fourier transform by using suitable properties of the
structure of time signals, and made frequency analysis and

filtering of very large signals practical. Similarly, in this article,
we identify and discuss properties of certain data representation
graphs that lead to more efficient implementations of DSPG

operations for big data. A suitable graph model is provided by
product graphs discussed in the next section.

Product Graphs
Consider two graphs (,)G AV1 1 1= and (,)G AV2 2 2= with
| | NV1 1= and | | NV2 2= nodes, respectively. The product
graph, denoted by ,G of G1 and G2 is the graph

	 (,),G G G AV1 2G= = G � (22)

with | | N NV 1 2= nodes and an appropriately defined
N N N N1 2 1 2# adjacency matrix AG [30], [31]. In particular,
three commonly studied graph products are the Kronecker,
Cartesian, and strong products.

For the Kronecker graph product, denoted as ,G G G1 27=
the adjacency matrix is obtained by the matrix Kronecker product
of adjacency matrices A1 and :A2

	 .A A A1 27=7 � (23)

Recall that the Kronecker product of matrices []bB mn !=

CM N# and C CK L! # is a KM LN# matrix with block structure

	 .
C

C

b

b

b

b
B C

C

C

,

,

,

,M

N

M N

0 0

1 0

0 1

1 1

7 h
f
h
f

	 IEEE SIGNAL PROCESSING MAGAZINE  [88]  SEPTEMBER 2014

Hence, the graph Fourier transform associated with a Cartesian
product graph is given by the matrix Kronecker product of the
graph Fourier transforms for its factor graphs:

	 () ,F V V V V F F1 2
1

1
1

2
1

1 27 7 7= = =#
- - - � (31)

and the spectrum is given by the element-wise summation of
the spectra of the smaller graphs: ,, ,n m1 2m m+ n N0 11# and

.m N0 21#
Reusing the property (29), (31) can be written as

() ()F F F F I I FN N1 2 1 22 17 7 7= =# and efficiently implemented
using parallelization and vectorization techniques. Moreover,
the computation of the eigendecomposition (30) is replaced
with finding the eigendecomposition of the shift matrices A1
and ,A2 which reduces the computation cost from ()O N3 to
() .O N N1

3
2
3+ For instance, when , ,N N N1 2 . the computa-

tional cost of the eigendecomposition is reduced by a factor
.N N Hence, for a graph with a million vertices, the cost of

computing the eigendecomposition is reduced by a factor of
more than ,3 104# and for a graph with a billion vertices, the
cost reduction factor is over .3 1013#

The same improvements apply to the Kronecker and strong
matrix products, since the eigendecomposition of the corre-
sponding shift matrices is

	 IEEE SIGNAL PROCESSING MAGAZINE  [89]  SEPTEMBER 2014

Relation to Existing Approaches
The instantiation of DSPG for product graphs relates to existing
approaches to complex data analysis that are not based on
graphs but rather view data as multidimensional arrays [2]–[4].
Given a K-dimensional data set ,S CN N NK1 2! # # #f the family of
methods called canonical decomposition or parallel factor
analysis searches for K matrices ,M Ck

N Rk! # ,k K1 # # that
provide an optimal approximation of the data set

	 ,S m m m E, , ,r
r

R

r K r1
1

2& & &f= +
=

/ � (32)

that minimizes the error

	 || | | | | .E E , , ,
n

N

n

N

n n n
1 1

2

k

K

K

1

1

1 2f= f

= =

/ /

Here, m ,k r denotes the rth column of matrix ,Mk and &
denotes the outer product of vectors.

A more general approach, called Tucker decomposition,
searches for K matrices ,M Ck

N Rk k! # ,k K1 # # and a matrix
C CR R RK1 2! # # #f that provide an optimal approximation of the
data set as

	 .S C m m E, , , ,
r

R

r r
r

R

r K r
1 1

1K

K

K

K

1

1

1 1 & &f f= +f

= =

/ / � (33)

Tucker decomposition is also called a higher-order PCA or SVD,
since it effectively extends these techniques from matrices to
higher-order arrays.

Decompositions (32) and (33) can be interpreted as signal com-
pression on product graphs. For simplicity of discussion, assume
that K 2= and consider a signal s CN N1 2! that lies on a product
graph (22) and corresponds to a 2-D signal ,S CN N1 2! # so that

,S s,n n n N n1 2 1 2 2= + where n N0 i i1# for , .i 1 2= If matrices M1
and M2 contain as columns, respectively, R1 and R2 eigenvectors
of A1 and ,A2 then the decomposition (33) represents a lossy com-
pression of the graph signal in the frequency domain, a widely used
compression technique in signal processing [21], [24].

Example Application
As a motivational application example of DSPG on product
graphs, we consider data compression. For the testing data set,
we use the set of daily temperature measurements collected by
150 weather stations across the United States [17] during the
year 2002. Figure 1(b) shows the measurements from one day
(1 December 2002), as well as the sensor network graph. The
graph is constructed by connecting each sensor to eight of its
nearest neighbors with undirected edges with weights given by
[17, eq. (29)]. As illustrated by the example in Figure 2(b), such

a data set can be described by a product of the sensor network
graph and the time series graphs. We use the sensor network
graph in Figure 1(b) with N 1501 = nodes and the time series
graph in Figure 1(a) with N 3652 = nodes.

The compression is performed in the frequency domain. We
compute the Fourier transform (31) of the data set, keep only C
spectrum coefficients with largest magnitudes and replace others
with zeros, and perform the inverse graph Fourier transform on
the resulting coefficients. This is a lossy compression scheme,
with the compression error given by the norm of the difference
between the original data set and the reconstructed one normal-
ized by the norm of the original data set. Note that, while the
,

