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Multicast Topology Inference From Measured
End-to-End Loss

N. G. Duffield, Senior Member, IEEE, Joseph Horowitz, Francesco Lo Presti, and Don Towsley, Fellow, IEEE

Abstract—The use of multicast inference on end-to-end mea-
surement has recently been proposed as a means to infer network
internal characteristics such as packet link loss rate and delay.
In this paper, we propose three types of algorithm that use loss
measurements to infer the underlying multicast topology: i) a
grouping estimator that exploits the monotonicity of loss rates
with increasing path length; ii) a maximum-likelihood (ML)
estimator (MLE); and iii) a Bayesian estimator. We establish their
consistency, compare their complexity and accuracy, and analyze
the modes of failure and their asymptotic probabilities.

Index Terms—Communication networks, end-to-end measure-
ment, maximum-likelihood (ML) estimation, multicast, statistical
inference, topology discovery.

I. INTRODUCTION

A. Motivation

I N this paper, we propose and evaluate a number of algo-
rithms for the inference of logical multicast topologies from

end-to-end network measurements. All are developed from re-
cent work that shows how to infer per-link loss rate from mea-
source gives rise to a copy of the packet at each receiver. Thus,
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a packet reaching each member of a subset of receivers encoun-
ters identicalconditions between the source and the receivers’
closest common branch point in the tree.

This approach has been used to infer the per-link packet loss
probabilities for logical multicast trees with a known topology.
The maximum-likelihood estimator (MLE) for the link proba-
bilities was determined in [3] under the assumption that probe
loss occurs independently across links and between probes.
This estimate is somewhat robust with respect to violations of
this assumption. This approach will be discussed in more detail
presently.

The focus of the current paper is the extension of these
methods to infer thelogical topologywhen it is not known
in advance. This is motivated in part by ongoing work [1]
to incorporate the loss-based MLE into the National Internet
Measurement Infrastructure [14]. In this case, inference is per-
formed on end-to-end measurements arising from the exchange
of multicast probes between a number of measurement hosts
stationed in the Internet. The methods here can be used to
infer first the logical multicast topology, and then the loss rates
on the links in this topology. What we do not provide is an
algorithm for identifying the physical topology of a network.

A more important motivation for this work is that knowledge
of the multicast topology can be used by multicast applications.
It has been shown in [9] that organizing a set of receivers in a
bulk transfer application into a tree can substantially improve
performance. Such an organization is central component of the
widely used RMTP-II protocol [20]. The development of tree
construction algorithms for the purpose of supporting reliable
multicast has been identified to be of fundamental importance
by the Reliable Multicast Transport Group of the Internet En-
gineeirng Task Force (IETF); see [7]. This motivated the work
reported in [16], which was concerned with grouping multicast
receivers that share the same set of network bottlenecks from
the source for the purposes of congestion control. Closely re-
lated to [3], the approach of [16] is based on estimating packet
loss rates for the path between the source and the common an-
cestor of pairs of nodes in the special case of binary trees. Since
loss is a nondecreasing function of the path length, this quantity
should be maximal for a sibling pair. The whole binary tree is
reconstructed by iterating this procedure.

B. Contribution

This paper describes and evaluates three methods for infer-
ence of logical multicast topology from end-to-end multicast
measurements. Two of these, i) and ii) below, are directly based
on the MLE for link loss probabilities of [3], as recounted in
Section II. In more detail, the three methods are as follows.
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We identify the physical multicast tree as comprising actual net-
work elements (the nodes) and the communication links that
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III. D ETERMINISTIC RECONSTRUCTION OFLOSSTREES BY

GROUPING

The use of estimates of shared loss rates at multicast receivers
has been proposed recently in order to group multicast receivers
that share the same set of bottlenecks on the path from the source
[16]. The approach was formulated for binary trees, with shared
loss rates having the direct interpretation of the loss rate on the
path from the root to the (nearest) ancestor of two receivers.
Since the loss rate cannot decrease as the path is extended, the
pair of receivers for which shared loss rate is greatest will be
siblings; if not then one of the receivers would have a sibling
and the shared loss rate on the path to their ancestor would be
greater. This maximizing pair is identified as a pair of siblings
and replaced by a composite node that represents their parent.
Iterating this procedure should then reconstruct the binary tree.

In this section and the following section, we establish theo-
retically the correctness of this approach, and extend it to cover
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Fig. 3. Tree Pruning Algorithm (").

that is achieved when is a sibling set. Conse-
quently, one could replace steps 5–8 of by simply finding
the maximal sibling set, i.e., select a maximal that min-
imizes . However, this approach would have worse com-
putational properties since it requires inspecting every subset of

.
is a root of the polynomial of degree from

Proposition 1 i). For a binary subset, is written down
explicitly

(5)

Calculation of
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establishes the consistency of the estimator ; the proof ap-
pears in Section X.

Theorem 5: Let
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Theorem 7: Let
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expressing “maximum ignorance” about the tree topology and
link probabilities. Clearly, if other prior information is available
about the tree, it may be incorporated into a nonuniform prior
distribution. The Bayes classifier becomes

(13)

This should be compared with the ML classifier in (7).

A. Consistency of Pseudo-Bayes Classifiers

In practice, our task is to identify the specific topology giving
rise to a set of measured data. When no prior distribution is spec-
ified, the concept of the Bayes classifier, as the maximizer of the
probability of correct classification, does not make sense, be-
cause “the” probability of correct classification is not defined.
Nonetheless, it may be convenient to construct apseudo-Bayes
classifier by choosing a distribution on , which plays the
role of a prior, and forming the classifier in (10), which we now
denote by . Classifiers constructed in this way are also con-
sistent under a mild condition.

Theorem 9: Let be a prior distribution on , and assume
that lies in the support of . Then is consistent in the
frequentist sense, i.e.,
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Fig. 8. " = 1.0%.

Fig. 9. " = 2.0%.

Fig. 10. " = 3.0%.

best for intermediate, decreasing for larger and smaller. The
explanation for this behavior is that smaller values oflead
to stricter criteria for grouping nodes. With finitely many sam-
ples, for small , sufficiently large fluctuations of the cause
erroneous exclusion of nodes. By increasing, the threshold
for group formation is increased and so accuracy is initially in-
creased. However, asapproaches the smallest interior link loss
rate, large fluctuations of the now cause erroneous inclusion
of nodes into groups. When is increased much beyond the

Fig. 11. " = 5.0%.

Fig. 12. " = 5%.

Fig. 13. " = 7%.

smallest interior loss rate, the probability of correct classifica-
tion falls to zero. The behavior is different if we ignore failures
to detect links with loss rates smaller than. For and

, in Figs. 12 and 13, respectively, we plot the fraction
of experiments in which the pruned topology was correctly
identified for the three algorithms. Here, the accuracy depends
on the relative values of and the internal link loss rates. In
these experiments, the actual loss rates was often very close to
5%, so that small fluctuations results in erroneous inclusions/ex-
clusions of nodes which accounts for the significant fraction of
failures for 5%. In Section VIII-B, we shall analyze this
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Fig. 15. ML and Bayesian classifier: The four possible topologies with three receivers.

Fig. 16. Misclassification in ML, Bayesian, and classifier:(�; �) randomly drawn according to the prior distribution. (a) Bayes and (") classifier.
(b) Bayes and ML classifiers.

the case in Fig. 16, where we plot the fraction of experiments in
which the topology was incorrectly identified as function of the
number of probes, for the different classifiers (for clarity, we
plot separately the curves for the ML and
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Fig. 17. Misclassification in ML, Bayesian, and classifier. Fixed(
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A. Misgrouping and Misclassification in

We start by studying misgrouping in binary trees under .
Consider the event that correctly groups nodes in
for some
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Fig. 18. Misclassification and misgrouping in . Left: Fraction of links misclassified with loss� �, for � = 0%, 2.5%, 5.0%, 7.5%. Right: Comparison of
experimental and approximated tail slopes.

linear slope of the fraction of misgrouped links, i.e., the one for
0%.

B. Misgrouping and Misclassification in

We turn our attention to the errors in classifying general trees
by the reference algorithm . In the following, without
loss of generality, we will study the errors in the classifica-
tion of the pruned tree , with

, under the assumption that , . This will
include, as a special case, whenis smaller than the internal
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so that

1) Misclassification Probabilities and Experiment Dura-
tion: We examine the asymptotics of the misclassification
probability for large and small by the same
means as in Section VIII-A. This amounts to finding the mean

and asymptotic variance
of the distribution of , then finding the
dominant exponent over the various . Let

denote the smallest internal link loss rate
of larger than and the largest
internal link loss rate of smaller than or if no
such loss rate exists (which occurs whenis smaller than all
internal links loss rate). The proof of the following result is
similar to that of Theorem 10 and is omitted.

Theorem 11:Let be a canonical loss tree. For each
,

converges in distribution, as the number of probes ,
to a Gaussian random variable with meanand variance

. Furthermore, as
and

i)
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Fig. 19. Misclassification and misgrouping in
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Of the algorithms presented, only the Bayesian is able to iden-
tify links with arbitrarily small loss rates. All the other clas-
sifiers require a parameter that acts as a threshold: a
link with loss rate below this value will be ignored and its end-
points identified. The threshold is required in order that sibling
groups not be separated due to random fluctuations of the in-
ferred loss rates. However, we do not believe that the neces-
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been grouped, the remaining pairs are still minimizers of
among all pairs of the reduced set in line
10 of Fig. 4. Hence,

10 of Fig. 4. Hence,
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