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Preface

Networks are ubiquitous in science and have become a focal point for discussion in everyday
life. Formal statistical models for the analysis of network data have emerged as a major
topic of interest in diverse areas of study, and most of these involve a form of graphical rep-
resentation. Probability models on graphs date back to 1959. Along with empirical studies
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Chapter 1

Introduction

Many scienti�c �elds involve the study of networks in some form. Networks have been
used to analyze interpersonal social relationships, communication networks, academic paper
coauthorships and citations, protein interaction patterns, and much more. Popular books
on networks and their analysis began to appear a decade ago, [see, e.g., 24; 50; 318; 319; 68]
and online \networking communities" such as Facebook, MySpace, and LinkedIn are an even
more recent phenomenon.

In this work, we survey selective aspects of the literature on statistical modeling and
analysis of networks in social sciences, computer science, physics, and biology. Given the
volume of books, papers, and conference proceedings published on the subject in these
di�erent �elds, a single comprehensive survey would be impossible. Our goal is far more
modest. We attempt to chart the progress of statistical modeling of network data over the
past seventy years and to outline succinctly the major schools of thought and approaches
to network modeling and to describe some of their interconnections. We also attempt to
identify major statistical gaps in these modeling e�orts. From this overview one might
then synthesize and deduce promising future research directions. Kolaczyk [177] provides a
complementary statistical overview.

The existing set of statistical network models may be organized along several major
axes. For this article, we choose the axis of static vs. dynamic models. Static network
models concentrate on explaining the observed set of links based on a single snapshot of the
network, whereas dynamic network models are often concerned with the mechanisms that
govern changes in the network over time. Most early examples of networks were single static
snapshots. Hence static network models have been the main focus of research for many
years. However, with the emergence of online networks, more data is available for dynamic
analysis, and in recent years there has been growing interest in dynamic modeling.

In the remainder of this chapter we provide a brief historical overview of network modeling
approaches. In subsequent chapters we introduce some examples studied in the network
literature and give a more detailed comparative description of select modeling approaches.
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1.1 Overview of Modeling Approaches

Almost all of the \statistically" oriented literature on the analysis of networks derives from
a handful of seminal papers. In social psychology and sociology there is the early work of
Simmel and Wol� [268] at the turn of the last century and Moreno [221] in the 1930s as well as
the empirical studies of Stanley Milgram [215; 298] in the 1960s; in mathematics/probability
there is the Erd�os-R�enyi paper on random graph models [94]. There are other papers that
dealt with these topics contemporaneously or even earlier. But these are the ones that appear
to have had lasting impact.

Moreno [221] invented the sociogram | a diagram of points and lines used to represent
relations among persons, a precursor to the graph representation for networks. Luce and
others developed a mathematical structure to go with Moreno’s sociograms using incidence
matrices and graphs (see, e.g., [202; 200; 201; 203; 244; 282; 11]), but the structure they
explored was essentially deterministic. Milgram gave the name to what is now referred to as
the "Small World" phenomenon | short paths of connections linking most people in social
spheres | and his experiments had provocative results: the shortest path between any two
people for completed chains has a median length of around 6; however, the majority of chains
initiated in his experiments were never completed! (His studies provided the title for the
play and movie Six Degrees of Separation, ignoring the compleity of his results due to the
censoring.) White [321] and Fienberg and Lee [100] gave a formal Markov-chain like model
and analysis of the Milgram experimental data, including information on the uncompleted
chains. Milgram’s data were gathered in batches of transmission, and thus these models can
be thought of as representing early examples of generative descriptions of dynamic network
evolution. Recently, Dodds et al. [86] studied a global \replication" variation on the Milgram
study in which more than 60,000 e-mail users attempted to reach one of 18 target persons
in 13 countries by forwarding messages to acquaintances. Only 384 of 24,163 chains reached
their targets but they estimate the median length for completions to be 7, by assuming that
attrition occurs at random.

The social science network research community that arose in the 1970s was built upon
these earlier e�orts, in particular the Erd�os-R�enyi-Gilbert model. Research on the Erd�os-
R�enyi-Gilbert model (along with works by Katz et al. [166; 168; 167]) engendered the �eld of
random graph theory. In their papers, Erd�os and R�enyi worked with �xed number of vertices,
N , and number of edges, E, and studied the properties of this model as E increases. Gilbert
studied a related two-parameter version of the model, with N as the number of vertices
and p the �xed probability for choosing edges. Although their descriptions might at �rst
appear to be static in nature, we could think in terms of adding edges sequentially and thus
turn the model into a dynamic one. In this alternative binomial version of the Erd�os-R�enyi-
Gilbert model, the key to asymptotic behavior is the value � = pN . There is a \phase
change" associated with the value of � = 1, at which point we shift from seeing many small
connected components in the form of trees to the emergence of a single \giant connected
component." Probabilists such as Pittel [243] imported ideas and results from stochastic
processes into the random graph literature.

Holland and Leinhardt [149]’s p1 model extended the Erd�os-R�enyi-Gilbert model to allow
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for di�erential attraction (popularity) and expansiveness, as well as an additional e�ect due
to reciprocation. The p1 model was log-linear in form, which allowed for easy computation of
maximum likelihood estimates using a contingency table formulation of the model [101; 102].
It also allowed for various generalizations to multidimensional network structures [103] and
stochastic blockmodels. This approach to modeling network data quickly evolved into the
class of p� or exponential random graph models (ERGM) originating in the work of Frank
and Strauss [110] and Strauss and Ikeda [287]. A trio of papers demonstrating procedures for
using ERGMs [316; 241; 254] led to the wide-spread use of ERGMs in a descriptive form for
cross sectional network structures or cumulative links for networks|what we refer to here
as static models. Full maximum likelihood approaches for ERGMs appeared in the work of
Snijders and Handcock and their collaborators, some of which we describe in chapter 3.

Most of the early examples of networks in the social science literature were relatively small
(in terms of the number of nodes) and involved the study of the network at a �xed point
in time or cumulatively over time. Only a few studies (e.g., Sampson’s 1968 data on novice
monks in the monastery [259]) collected, reported, and analyzed network data at multiple
points in time so that one could truly study the evolution of the network, i.e., network
dynamics. The focus on relatively small networks reected the state-of-art of computation
but it was su�cient to trigger the discussion of how one might assess the �t of a network
model. Should one focus on \small sample" properties and exact distributions given some
form of minimal su�cient statistic, as one often did in other areas of statistics, or should
one look at asymptotic properties, where there is a sequence of networks of increasing size?
Even if we have \repeated cross-sections" of the network, if the network is truly evolving
in continuous time we need to ask how to ensure that the continuous time parameters are
estimable. We return to many of these question in subsequent chapters.

In the late 1990s, physicists began to work on network models and study their properties



Backstrom et al. [20], a phenomenon which has its counterpart description in the social
science network modeling literature.

The probabilistic literature on random graph models from the 1990s made the link with
epidemics and other evolving stochastic phenomena. Picking up on this idea, Watts and
Strogatz [320] and others used epidemic models to capture general characteristics of the
evolution of these new variations on random networks. Durrett [91] has provided us with a
book-length treatment on the topic with a number of interesting variations on the theme.
The appeal of stochastic processes as descriptions of dynamic network models comes from
being able to exploit the extensive literature already developed, including the existence and
the form of stationary distributions and other model features or properties. Chung and Lu
[69] provide a complementary treatment of these models and their probabilistic properties.

One of the principal problems with this diverse network literature that we see is that,
with some notable exceptions, the statistical tools for estimation and assessing the �t of
\statistical physics" or stochastic process models is lacking. Consequently, no attention is
paid to the fact that real data may often be biased and noisy. What authors in the network
literature have often relied upon is the extraction of key features of the related graphical
network representation, e.g., the use of power laws to represent degree distributions or mea-
sures of centrality and clustering, without any indication that they are either necessary or
su�cient as descriptors for the actual network data. Moreover, these summary quantities
can often be highly misleading as the critique by Stou�er et al. [285, 286] of methods used
by Barab�asi [25] and V�azquez et al. [304] suggest. Barab�asi claimed that the dynamics of a
number of human activities are scale-free, i.e., he speci�cally reported that the probability
distribution of time intervals between consecutive e-mails sent by a single user and time
delays for e-mail replies follow a power-law with exponent



requirement that the underlying graph be a cycle or grid renders the model inapplicable
to webgraphs or biological networks. Durrett [91] treats variations on this model as well.
More recently, a number of authors have looked to combine the stochastic blockmodel ideas
from the 1980s with latent space models, model-based clustering [137] or mixed-membership
models [9], to provide generative models that scale in reasonable ways to substantial-sized
networks. The class of mixed membership models resembles a form of soft clustering [95]
and includes the latent Dirichlet allocation model [41] from machine learning as a special
case. This class of models o�ers much promise for the kinds of network dynamical processes
we discuss here.

1.2 What This Survey Does Not Cover

This survey focuses primarily on statistical network models and their applications. As a
consequence there are a number of topics that we touch upon only briey or essentially not
at all, such as

� Probability theory associated with random graph models. The probabilistic literature
on random graph models is now truly extensive and the bulk of the theorems and
proofs, while interesting in their own right, are largely unconnected with the present
exposition. For excellent introductions to this literature, see Chung and Lu [69] and
Durrett [91]. For related results on the mathematics of graph theory, see Bollob�as [43].

� E�cient computation on networks. There is a substantial computer science litera-
ture dealing with e�cient calculation of quantities associated with network structures,
such as shortest paths, network diameter, and other measures of connectivity, central-
ity, clustering, etc. The edited volume by Brandes and Erlebach [48] contains good
overviews of a number of these topics as well as other computational issues associated
with the study of graphs.

� Use of the network as a tool for sampling.



[160], whose book contains an excellent semi-technical introduction to network concepts
and structures.

� Relational networks. This is a very popular area in machine learning. It uses proba-
bilistic graphical models to represent uncertainty in the data. The types of \networks"
in this area, such as Bayes nets, dependency diagrams, etc., have a di�erent meaning
than the networks we consider in this review. The main di�erence is that the net-
works in our work are considered to \be given" or arising directly from properties of
the network under study, rather than being representative of the uncertainty of the
relationships between nodes and node attributes. There is a multitude of literature
on relational networks, e.g., see Friedman et al. [112



Chapter 2

Motivation and Dataset Examples

2.1 Motivations for Network Analysis

Why do we analyze networks? The motivation behind network analysis is as diverse as the
origin of network problems within di�ering academic �elds. Before we delve into details of
the \how" of statistical network modeling, we start with some examples of the \why." This
chapter also includes descriptions of popular datasets for interested readers who may wish
to exercise their modeling muscles.

Social scientists are often interested in questions of interpretation such as the meanings of
edges in a social network [181]. Do they arise out of friendliness, strategic alliance, obligation,
or something else? When the meaning of edges are known, the object is often to characterize
the structure of those relations (e.g., whether friendships or strategic alliances are hierarchical
or transitive). A large volume of statistically-oriented social science literature is dedicated to
modeling the mechanisms and relations of network properties and testing hypotheses about
network structure, see, e.g., [280].

Physicists, on the other hand, tend to be interested in understanding parsimonious mech-
anisms for network formation [28; 235]. For example, a common modeling goal is to explain
how a given network comes to have its particular degree distribution or diameter at time t.

Several network analysis concepts have found niches in computational biology. For ex-
ample, work on protein function classi�cation can be thought of as �nding hidden groups in
the protein-protein interaction network [7; 8] to gain better understanding of underlying bi-
ological processes. Label propagation (node similarity) in networks can be harnessed to help
with functional gene annotation [226]. Graph alignment can be used to locate subgraphs
that are common among species, thus advancing our understanding of evolution [105]. Mo-
tif �nding, or more generally the search for subgraph patterns, also has many applications
[17]. Combining networks from heterogeneous data sources helps to improve the accuracy
of predicted genetic interactions [327]. Heterogeneity of network data sources in biology
introduces a lot of noise into the global network structure, especially when networks created
for di�erent purposes (such as protein co-regulation and gene co-expression) are combined.
[225] addresses network de-noising via degree-based structure priors on graphs. For a review
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of biological applications of networks, please see [332].
The task of �nding hidden groups is also relevant in analyzing communication networks,

e.g., in detecting possible latent terrorist cells [30]. The related task of discovering the \roles"
of individual nodes is useful for identity disambiguation [36] and for business organization
analysis [207]. These applications often take the machine learning approach of graph parti-
tioning, a topic previously known in social science and statistics literature as blockmodeling
[199; 89]. A related question is functional clustering, where the goal is not to statistically
cluster the network, but to discover members of dynamic communities with similar functions
based on existing network connectivity [122; 232; 234; 266].

In the machine learning community, networks are often used to predict missing informa-
tion, which can be edge related, e.g., predicting missing links in the network [238; 73; 198],
or attribute related, e.g., predicting how likely a movie is to be a box o�ce hit [229]. Other
applications include locating the crucial missing link in a business or a terrorist network, or
calculating the probability that a customer will purchase a new product, given the pattern
of purchases of his friends [142]. The latter question can more generally be stated as predict-
ing individual’s preferences given the preferences of her \friends". This research direction
has evolved into an area of its own under the name of recommender systems, which has
recently received a lot of media attention due to the competition by the largest online movie
rental company Netix. The company has awarded a prize of one million dollars to a team
of researchers that were able to predict customer ratings of movies with higher than 10%
accuracy than their own in-house system [290].

The concept of information propagation also �nds many applications in the network
domain, such as virus propagation in computer networks [310], HIV infection networks [222;
163; 164], viral marketing [87] and more generally gossiping [170]. Here some work focuses
on �nding network con�gurations optimal for routing, while other research assumes that the
network structure is given and focus on suitable models for disease or information spread.

2.2 Sample Datasets

A plethora of data sets are available for network analysis, and more are emerging every year.
We provide a quick guided tour of the most popular datasets and applications in each �eld.

In his ground-breaking paper, Milgram [215] experimented with the construction of in-
terpersonal social networks. His result that the median length of completed chains was
approximately 6 led to the pop-culture coining of the phrase \six degrees of separation."
Subjects of subsequent studies ranged from social interactions of monks [259], to hierar-
chies of elephants [209; 303], to sexual relationships between adults of Colorado [176], to
friendships amongst elementary school students [141; 299].

While a lot of biological applications focus on the study of protein-protein interaction
networks [114; 115; 184; 248; 328], metabolic networks [158], functional and co-expression
gene similarity networks and gene regulatory networks [111; 309], computer science applica-
tions revolve around e-mail [207], the internet [97; 63; 151], the web [152; 13], academic paper
co-authorship [127] and citation networks [204; 216]. Citation networks have a long history
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of modeling in di�erent areas of research starting with the seminal paper of de Solla Price
[83] and more recently in physics [190]. With the recent rise of online networks, computer
science and social science researchers are also starting to examine blogger networks such as
LiveJournal, social networks found on Friendster, Facebook, Orkut, and dating networks such
as Match.com.

Terrorist networks (often simulated) and telecommunication networks have come under

http://www.analytictech.com/ucinet/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://www-personal.umich.edu/~mejn/netdata/
http://cdg.columbia.edu/cdg/datasets
http://www.nd.edu/~networks/resources.htm
http://snap.stanford.edu/data/


Figure 2.1: Network derived from \whom do you like" sociometric relations collected by
Sampson.

shortly after these events. About a year after leaving the monastery, Sampson surveyed
all of the novices, and asked them to rank the other novices in terms of four sociometric
relations: like/dislike, esteem, personal inuence, and alignment with the monastic credo,
retrospectively, at four di�erent epochs spanning his stay at the monastery.

The presence of a well de�ned social structure within the monastery (the factions) that
can be inferred from responses to the survey, as well as the social dynamics of subtle ideo-
logical conicts that led to the dissolution of the monastic order, have much intrigued both
statisticians and social scientists for the past four decades. Researchers typically consider
the faction labels assigned by Sampson to the novices as the anthropological ground truth
in their analysis. For example analyses, we refer to [103; 137; 81; 9].

2.2.2 The Enron Email Corpus

The Enron email corpus has been widely studied in recent machine learning network litera-
ture. Enron Corporation was an energy and trading company specializing in the marketing of
electricity and gas. In 2000 it was the seventh largest company in the United States with re-

http://www.ferc.gov/industries/electric/indus-act/wec/enron/info-release.asp


Figure 2.2: E-mail exchange data among 151 Enron executives, using a threshold of a mini-
mum of 5 messages for each link. Source: [153].

in the CALO (Cognitive Assistant that Learns and Organizes) project corrected integrity
problems in the dataset.6 The original FERC dataset contains 619,446 email messages (about
92% of Enron’s sta� emails), and the cleaned-up CALO dataset contains 200,399 messages
from 158 users. Another version of the data consists of the contents of the mail folders of
the top 151 executives, containing about 225,000 messages covering a period from 1997 to
2004.7 Figure 2.2 and Figure 2.3 give network snapshots of the e-mail tra�c among these

http://www.cs.cmu.edu/~enron/
http://www.isi.edu/~adibi/Enron/Enron.htm


network analysis to visualization. A collection of papers working with the Enron corpus
were gathered together in a special 2005 issue of Computational & Mathematical Organization
Theory, see [58].

2.2.3 The Protein Interaction Network in Budding Yeast

The budding yeast is a unicellular organism that has become a de-facto model organism
for the study of molecular and cellular biology [47]. There are about 6,000 proteins in the
budding yeast, which interact in a number of ways [64]. For instance, proteins bind together
to form protein complexes, the physical units that carry out most functions in the cell
[184]. In recent years, a large amount of resources has been directed to collect experimental
evidence of physical proteins binding, in an e�ort to infer and catalogue protein complexes
and their multifaceted functional roles [e.g. 98; 159; 300; 114; 143]. Currently, there are



Figure 2.4: A popular image of the protein interaction network in Saccharomyces cerevisiae,
also known as the budding yeast. The �gure is reproduced with permission. Source: [27].

snowball samples collected from past studies; it allows for the construction of relationship
networks with more accurate global characteristics. The fully observed friendship networks
in all the schools are also a valuable resource and an important contribution of this work.

Wave II data collection occurred 18-months after Wave I in 1996 and followed up on the
in-home interviews. The dataset covered 14,738 adolescents and 128 school administrators.
Based on the data collected from Wave I and II, Bearman et al. [31] constructed the timed
sequence of relationship networks amongst students from the two large schools with saturated
sampling. The resulting sexual relationship network bears strong resemblance to a spanning
tree as opposed to previously hypothesized core or inverse-core structures8 (See Figure 2.5.)

Wave III interviews were conducted in 2001 and 2002 with topics including marriage,

8A core is a group of inter-connected individuals who sit at the center of the graph and interact with
individuals on the periphery. An inverse core is a group of central individuals who are connected to those
on the periphery but not to each other.
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Figure 2.5: The Add Health sexual relationships network of US highschool adolescents. This
�gure is reproduced with permission. Source: Bearman et al. [31]

childbearing, and sexually transmitted diseases. Of the original Wave I in-home respondents,
15,170 were interviewed again for Wave III. Of these, 13,184 participants provided oral uid
specimens for HIV testing. Morris et al. [223

http://www.cpc.unc.edu/projects/addhealth


year periods beginning 1973, 1981, 1985, 1989, 1992, 1997, 1999. Christakis and Fowler [65]
derive body mass index information on a total of 12,067 individuals who appeared in any of
the Framingham Heart cohorts (one \close friend" for each cohort member).9 There were
38,611 observed family and social ties (edges) to the core 5,124 cohort members.

Through a series of network snapshots and statistical analyses, Christakis and Fowler
described the evolution of the \clustering" of obesity in this social network. In particular
they claim to have examined whether the data conformed to \small-world," \scale-free,"
and \hierarchical" types of of random graph network models. Figure 2.6 depicts data on the
largest connected subcomponent (the so-called giant component) for the network in 2000,
which consists of 2200 individuals. Other analyses in their paper explore attributions of the
individuals via longitudinal logistic-regression models with lagged e�ects. Subsequently, they
have published similar papers focused on the dynamics of smoking behavior over time [66]
and on happiness [67], both using the structure of Framingham \o�spring" cohort.

This work has come under criticism by others. For example Cohen-Cole and Fletcher
note that there are plausible alternative explanations to the network structure based on con-
textual factors [77], and in a separate paper demonstrate that the same methodology detects
\implausible" social network e�ects for such medical conditions as acne and headaches as
well as for physical height [78]. The authors answer to these criticisms can be found in [108].
The question of the magnitude and signi�cance of social network e�ects is still a subject of
an ongoing debate.

2.2.6 The NIPS Paper Co-Authorship Dataset

The NIPS dataset contains information on publications that appeared in the Neural In-
formation Processing Systems (NIPS) conference proceedings, volumes 1 through 12, cor-
responding to years 1987-1999|the pre-electronic submission era. The original collection
contained scanned full papers made available by Yann LeCunn. Sam Roweis subsequently
processed the data to glean information such as title, authorship information, and word
counts per document. In total, there are 2,037 authors and 1,740 papers with an average of
2.29 authors per paper and 1.96 papers per author. The NIPS database is available from
Sam Roweis’ website10 in raw and MATLAB formats along with a detailed description and
information on its construction.

Various authors have used the NIPS data to analyze author-to-author connectivity in
static [126] as well as dynamic settings [264]. Li and McCallum [197] modeled the text of the
documents and Sarkar et al. [265] analyzed the two-mode network (author-word-author) in
a dynamic context. In Figure 2.7 we reproduce a graphic illustration of the inferred dynamic
evolution of the network from [263].

http://www.cs.toronto.edu/~roweis/data.html


Figure 2.6: Obesity network from Framingham o�spring cohort data. Each node represents
one person in the dataset (a total of 2200 in this picture). Circles with red borders denote
women, with blue borders { men. The size of each circle is proportional to the body-mass
index. The color inside the circle denotes obesity status - yellow is obese (body-mass index
� 30, green is non-obese. The colors of ties between nodes indicate relationships - purple
denotes a friendship or marital tie and orange is a familial tie. This �gure is reproduced
with permission. Source: [65].
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Chapter 3

Static Network Models

A number of basic network models are essentially static in nature. The statistical activities
associated with them focus on certain local and global network statistics and the extent to
which they capture the main elements of actual realized networks. In this chapter, we briey
summarize two lines of research. The �rst originates in the mathematics community with
the Erd�os-R�enyi-Gilbert model and led to two types of generalizations: (i) the \statistical
physics" generalizations that led to power laws for degree distributions|the so-called scale-
free graphs, and (ii) the exchangeable graph models that introduce weak dependences among
the edges in a controlled fashion, which ultimately lead to a range of more structured con-
nectivity patterns and enable model comparison strategies rooted in information theory. A
second line of research originated in the statistics and social sciences communities in response
to a need for models of social networks. The p1 model of Holland and Leinhardt, which in
some sense generalizes the Erd�os-R�enyi-Gilbert model, and the more general descriptive fam-
ily of exponential random graph models e�ectively initiate this line of modeling. Some of
these models also have a generative interpretation that allows us to think about their use in



to types of links, relationships, or interactions between the units, and they may be directed,
as in the Holland-Leinhardt model, or undirected, as in the Erd�os-R�enyi-Gilbert model.

A note about terminology: in computer science, graphs contain nodes and edges; in
social sciences, the corresponding terminology is usually actors and ties. We largely follow
the computer science terminology in this review.

3.2 The Erd�os-R�enyi-Gilbert Random Graph Model

The mathematical biology literature of the 1950s contains a number of papers using what we
now know as the network model G(N; p), which for a network of N nodes sets the probability
of an edge between each pair of nodes equal to p, independently of the other edges, e.g., see
Solomono� and Rapoport [281] who discuss this model as a description of a neural network.
But the formal properties of simple random graph network models are usually traced back to
Gilbert [119], who examined G(N; p), and to Erd�os and R�enyi [93]. The Erd�os-R�enyi-Gilbert
random graph model, G(N;E), describes an undirected graph involving N nodes and a �xed
number of edges, E, chosen randomly from the

�
N
2

�
possible edges in the graph; an equivalent

interpretation is that all
�(N

2 )
E

�
graphs are equally likely.1 The G(N; p) model has a binomial

likelihood where the probability of E edges is

‘(G(N; p) has E edges j p) = pE(1� p)(
N
2 )�E;



P3. If � tends to a constant c > 1, then a graph in G(N; p) will have a unique \giant"
component containing a positive fraction of the nodes, a.s. as N ! 1. No other
component will contain more than O(logN) nodes, a.s. as N !1.

A summary of a proof using branching processes is given in the appendix of this chapter.
Some of the proof concepts will be useful for discussion of exchangeable graph models in
section 3.3.

The Erd�os-R�enyi-Gilbert model has spawned an enormous number of mathematical pa-
pers that study and generalize it, e.g., see [43]. But few of them are especially relevant for
the actual statistical analysis of network data. In essence, the model dictates that every
node in a graph has approximately the same number of neighbors. Empirically there are
few observed networks with such simple structure, but we still need formal tools for decid-
ing on how poor a �t the model provides for a given observed network, and what kinds of
generalized network models appear to be more appropriate. This has led to two separate
literatures, one of which has focused on formal statistical properties associated with estimat-
ing parameters of network models|the p1 and exponential random graph models described
below|and a second that identi�es selected predicted features of models and empirically
checks observed networks for those features. The latter is largely associated with papers
emanating from statistical physics and computer science, several of which are described in
detail in chapter 4.

3.3 The Exchangeable Graph Model

The exchangeable graph model provides the simplest possible extension of the original ran-
dom graph model by introducing a weak form of dependence among the probability of sam-



pendent given the binary string representations of the incident nodes. They are exchangeable
in the sense of De Finetti [82].

From a statistical perspective, the exchangeable graph model we survey here [1; 5] pro-
vides perhaps the simplest step-up in complexity from the random graph model [93; 119]. In
the data generation process, the bit strings are equally probable but the induced probabilities
of observing edges are di�erent. A class of random graphs with such a property has been
recently rediscovered and further explored in the mathematics literature, where the class of
such graphs is referred to as inhomogeneous random graphs [45]. An alternative and arguably
more interesting set of speci�cations can be obtained by imposing dependence among the
bits at each node. This can be accomplished by sampling sets of dependent probabilities
from a family of distributions on the unit hypercube, ~pn 2 [0; 1]K , and then sampling the
bits independently given these dependent probabilities.

1. Sample node-speci�c K-bit binary strings for each node n 2 N

~pn � hypercube (~�; �; �), where � > (K � 1) � � > 0;

bnk � Bern (pnk), for k = 1; : : : ; K

2. Sample directed edges for all node pairs n;m 2 N �N

Ynm � Bern
�
q(~bn;~bm)

�
,

In the hypercube distribution3, ~�; �; � control the frequency, variability and correlation of
the bits within a string, respectively; and q maps binary pairs of strings into the unit interval.

In the exchangeable graph model, the number of bits, K, captures the complexity of
the graph. For instance, for K < N the model provides a compression of the graph. For
directed graphs the function q



giant component emerges because a number of smaller components must intersect with high
probability. In exchangeable graph models however, the giant component has a peculiar
structure; connected components are themselves connected to form the giant component as
soon as bit strings that match on two bits appear with high probability. Figure 3.1 provides
a graphical illustration of this intuition. Nodes that bridge two connected components are

Figure 3.1: Left panel. An example adjacency matrix that correspond to a fully connected
component among 100 nodes. Right panel. The clustering coe�cient as a function of � on a
sequence of graphs with 100 nodes. Here � = 12, and log(�i) = 1

K
for every i = 1 : : : K.

evident in the left panel. Note that there are no nodes that bridge three components, as bit
strings that match on three bits is an unlikely event in a graph with 100 nodes.

Given a graph, we can infer the corresponding set of binary strings from data. The
likelihood that correspond to an exchangeable graph model is simple to write,

‘(Y j�) =

Z
d ~b1:N

� Y
n;m

Pr (Yn;mj~bn;~bm; q)
Y
n

Pr (~bnj�)
�
;

where � = (~�; �; �) or an appropriate set of parameters. We can apply standard inference
techniques [2; 9]. Fitting an exchangeable graph model allows us to assess the complexity
of an observed graph, leveraging notions from information theory. For instance, we can
use the minimum description length (MDL) principle to decide how many bits we need to
explain the observed connectivity patterns with high probability. We can also quantify how
much information is retained at di�erent bit-lengths, and plot the corresponding information
pro�le for K < N and an entropy histogram for any given value of K.

The exchangeable graph model allows for algorithmic comparison of any set of statistical
models that are proposed to summarize an observed graph. As an illustration, consider
an observed graph G and two alternative models A and B. Rather than comparing how
well models A and B recover the degree distribution of G or other graph statistics, and
independently of whether it makes sense to directly compare the two likelihoods of A and B
(in fact, these models need not have a likelihood), we can proceed as follows.
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1. Given a graph G, �t models A(�a) and B(�b) to obtain an estimate of their parameters
�a

Est and �b
Est respectively.

2. Sample M graphs at random from the support of A(�a
Est) and B(�b

Est).

3. Compute the distributions of summary statistics based on notion from information
theory, such as information pro�le and entropy histogram, corresponding to the 2M
graphs sampled from A and B.

4. Compare models in terms of the distribution on the statistics above, such as the com-
plexity of the two models’ supports and their similarity to the complexity of G.

The exchangeable graph model also allows for evaluation of the distribution of the number
of bit strings with I matching bits, for any integer I < K. In theory this distribution leads to
expectations on the number of nodes that bridge I communities, where the members of each
community have only one out of I matching bits. In practice, we may want to specify K in
advance so that each bit corresponds to a well de�ned property. For instance, in applications
to biology, nodes may correspond to proteins and the K bits encode presence or absence of
speci�c protein domains. The distribution on the number of I matchings leads to p-values
that summarize how unexpected it is to observe binding events among a set of proteins that
share a certain combination of domains.

Overall, the exchangeable graph model introduces weak dependences among the edges
of a random graph in a controlled fashion, which ultimately lead to a range of more struc-
tured connectivity patterns and enable model comparison strategies rooted in notions from
information theory. The focus here is not on modeling per se. In fact, the model is kept
as simple as possible. Rather, the focus is on modeling as a means to establish a technical
link between graph connectivity and node attributes. This technical link is useful to address
some of the issues listed in Chapter 5



3.4 The p1 Model for Social Networks

A conceptually separate thread of research developed in parallel in the statistics and social
sciences literature, starting with the introduction of the p1 model. Consider a directed graph
on the set of n nodes. Holland and Leinhardt’s p1 model focuses on dyadic pairings and
keeps track of whether node i links to j, j to i, neither, or both. It contains the following
parameters:

� �: a base rate for edge propagation,

� �i (expansiveness): the e�ect of an outgoing edge from i,

� �j (popularity): the e�ect of an incoming edge into j,

� �ij (reciprocation/mutuality): the added e�ect of reciprocated edges.

Let P (0; 0) be the probability for the absence of an edge between i and j, Pij(1; 0) the
probability of i linking to j (\1" indicates the outgoing node of the edge), Pij(1; 1) the
probability of i linking to j and j linking to i. The p1 model posits the following probabilities
(see [149]):

logPij(0; 0) = �ij; (3.1)

logPij(1; 0) = �ij + �i + �j + �; (3.2)

logPij(0; 1) = �ij + �j + �i + �; (3.3)

logPij(1; 1) = �ij + �i + �j + �j + �i + 2� + �ij: (3.4)

In this representation of p1, �ij is a normalizing constant to ensure that the probabilities
for each dyad (i; j) add to 1. For our present purposes, assume that the dyad is in one
and only one of the four possible states. The reciprocation e�ect, �ij, implies that the odds
of observing a mutual dyad, with an edge from node i to node j and one from j to i, is
enhanced by a factor of exp(�ij) over and above what we would expect if the edges occured
independently of one another.

The problem with this general p1 representation is that there is a lack of identi�cation of
the reciprocation parameters. The following special cases of p1 are identi�able and of special
interest:

1. �i = 0, �j = 0, and �ij = 0. This is basically an Erd�os-R�enyi-Gilbert model for
directed graphs: each directed edge has the same probability of appearance.

2. �ij = 0, no reciprocal e�ect. This model e�ectively focuses solely on the degree distri-
butions into and out of nodes.

3. �ij = �, constant reciprocation. This was the version of p1 studied in depth by Holland
and Leinhardt using maximum likelihood estimation.
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4. �ij = � + �i + �j, edge-dependent reciprocation. Fienberg and Wasserman [101, 102]
described this model and how to �nd maximum likelihood estimate for the parameters.

In the constant reciprocation setting, the elevated probability of reciprocal edges does not
depend on the dyad, whereas edge-dependent reciprocation dictates multiplicative increases
of the reciprocation probability based on node-speci�c parameters.

The likelihood function for the p



http://stat.gamma.rug.nl/stocnet/


3.6 Exponential Random Graph Models

Under the assumption that two possible edges are dependent only if they share a common
node,6 Frank and Strauss [110] proved the following characterization for the probability
distribution of undirected Markov graphs:

Pr
�
fY = yg = exp

�



these models where the major problem of double-counting is mitigated but not overcome.
Hunter and Handcock [155] estimate likelihood ratios for nearby f�ig using a MCMC proce-
dure related to the work of Geyer and Thompson [118]. Their estimation procedure can be
used for models based on distributions in the curved exponential family.

Robins et al. [256] describe problems associated with the estimation of parameters in
many ERGMs, involving near degeneracies of the likelihood function and thus of methods
used to estimate parameters using maximum likelihood. For example, for a certain com-
bination of ERGM statistics, the likelihood function may have multiple, clearly distinct
modes, and there are very few network con�gurations|often radically di�erent from each
other|that have non-zero probabilities. This is a topic of current theoretical and empirical
investigation rooted in the theory of discrete exponential families [136; 251]. For a discus-
sion of mixing times of MCMC methods for ERGMs and the relevance to convergence and
degeneracies, see [35].

There are two carefully constructed packages of routines that are available for analyzing
network data using ERGMs: statnet7 and SIENA8. These packages focus on the use of
MCMC methods for estimating the parameters in ERGMs.

Remark. It is possible to express the current formulation of exponential random graphs
using the formalism of undirected graphical models and the Hammersley-Cli�ord theorem
[76; 33]. We can write the likelihood of an arbitrary undirected graph as

Pr(yj�) =

Q
c2C  (ycj�c)

z
; (3.8)

where yc denotes the nodes in clique c, �c denotes the corresponding set of parameters,  are
non-normalized potentials over the cliques, and z =

PQ
c2C  (ycj�c) is the normalization

constant. If the likelihood is in the exponential family, then the log potentials are linear in
�c and \features" u(yc), and we can write:

Pr(yj�) = exp
nX

c2C

log (ycj�c)� log z
o

= exp
nX

c2C

�>c u(yc)� log z
o

= exp
n

�>u(y)� log z
o
:

Within the exponential family, the advantage is that computing derivatives and likelihood
and deriving the corresponding EM algorithm are feasible, although possibly computationally
expensive, by using variational approximation strategies and Monte Carlo methods. A lot
of methodology on the subject has been developed in the area of machine learning. There,

7A package written for the R statistical environment described at76;76;

http://csde.washington.edu/statnet/
http://csde.washington.edu/statnet/
http://stat.gamma.rug.nl/snijders/siena.html
http://stat.gamma.rug.nl/snijders/siena.html


undirected graphs appear primarily in the context of relational learning and imaging. For an
in-depth discussion on exact and approximation methods and for references see [247; 308].

3.7 Random Graph Models with Fixed Degree Distri-

bution

The Erd�os-R�enyi-Gilbert random graph model is fully symmetric and the expected degree
(the number of edges associated with a node) is the same for all nodes in the graph, following
a binomial distribution. A number of natural extensions of the Erd�os-R�enyi-Gilbert model
result in varying node degrees. For example,

� the preferential attachment model [26] captures the formation of hubs in a graph (see
section 4.1);

� the one-parameter \small-world" model [320] interpolates between an ordered �nite-
dimensional lattice and an Erd�os-R�enyi-Gilbert random graph in order to produce local
clustering and triadic closures (see section 4.2).

Albert and Barab�asi [12] describe a number of variants on these themes. Many of the
investigators exploring the use of such models often focus on the empirical degree dis-
tribution, claiming for example that it follows a power-law in many real world networks
(cf. [26; 232; 69; 91]). The papers utilizing these \statistical physics" style models often
talk about �xed-degree distributions [e.g., 239], and they either �x the degree-distribution
parameters or compute distributions that are conditional on some function of the degree
distributions or sequences, such as their expectations (cf. [235; 70]). Software is available to



largely as a mechanism for avoiding the degeneracies and near degeneracies observed when
unconditional maximum likelihood is used, cf. section 3.6 and [256]. Snijders [274] does



266; 217]. This literature is now voluminous and seemingly unconnected to the statistical
blockmodel work.

The basic idea, in both the model-based and algorithmic approaches as well as the com-
munity detection literature, is that nodes that are heavily interconnected should form a
block or community. The nodes are reordered to display the blocks down the diagonal of
the adjacency matrix representing the network. Moreover, the connections between nodes
in di�erent blocks appear in much sparser o�-diagonal blocks. In model-based approaches,
the partition of the nodes maximizes a statistical criterion linked to the model, e.g., a like-
lihood function, whereas most algorithmic solutions maximize ad hoc criteria related to the
\density" of links within and between blocks.

More formally, a blockmodel is a model of network data that relies on the intuitive
notion of structural equivalence: two nodes are de�ned to be structurally equivalent if their
connectivity with similar nodes is similar|this is a \soft" de�nition.9





Also note that the pairs of group memberships that underlie interactions need not be equal;
this fact is useful for characterizing asymmetric interaction networks. Equality may be
enforced when modeling symmetric interactions.

Inference in the blockmodel is challenging, as the integrals that need to be solved to
compute the likelihood cannot be evaluated analytically. For simplicity, the likelihood is

‘(Y j ~�;B) =

Z
�

Z
Z

Pr(Y j Z;B) Pr(Z j �) Pr(� j ~�) dZ d�:

While the inner integral is easily solvable10, the outer integral is not. Exact inference is thus
not an option. To complicate things, the number of observations scales as the square of
the number of nodes, O(N2). Sampling algorithms such as Monte Carlo Markov chains are
typically too slow for real-size problems in the natural, social, and computational sciences.
Airoldi et al. [9] suggest a nested variational inference strategy to approximate the posterior
distribution on the latent variables, (�; Z). (Variational methods scale to large problems
without loosing much in terms of accuracy [3; 49; 308].)

Bickel and Chen [37], the most recent contribution to this literature, brings new twists
to the model-based approach of community discovery. They use a blockmodel to formalize a
given network in terms of its community structure. The main result of this work implies that
community detection algorithms based on the modularity score of Newman and Girvan [122]
are (asymptotically) biased. It shows that using modularity scores can lead to the discovery
of an incorrect community structure even in the favorable case of large graphs, where com-
munities are substantial in size and composed of many individuals. This work also proves
that blockmodels and the corresponding likelihood-based algorithms are (asymptotically)
unbiased and lead to the discovery of the correct community structure. The proof relies on
the exchangeability results developed in the statistics community [15; 165] applied to paired
measurements [84].

3.9 Latent Space Models

The intuition at the core of latent space models is that each node i 2 N can be represented
as a point zi in a \low dimensional" space, say Rk. The existence of an edge in the adjacency
matrix, Y (i; j) = 1, is determined by the distance among the corresponding pair of nodes in
the low dimensional space, d(zi; zj), and by the values of a number of covariates measured
on each node individually. The latent space model was �rst introduced by Ho� et al. [146]
with applications to social network analysis, and has been recently extended in a number
of directions to include treatment of transitivity, homophily on node-speci�c attributes,
clustering, and heterogeneity of nodes [144; 137; 183].

10The inner integral resolves into a series of sums, each one over the support of an individual ~z variable.
The support is the same for all such ~z variables, and it is given by the N vertices of the K-dimensional unit
hypercube. In other words, the inner integral is a series of sums, each over the same N elements.
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Note that it is possible to re-parametrize Zi = �i!i to separate the position in a latent
reference space, 
, from its magnitude, �i



variational methods for a computationally e�cient approximation to the posterior. These
methods can scale to large matrices (e.g., millions of nodes) because of the simpli�ed approxi-
mation, but at an unknown cost to accuracy. It would be interesting to explore computational
tradeo�s for the latent space cluster model [



giant component, G, in which each node can be reached from every other node.
The following formal argument comes from lecture notes by Guetz and Constantine [133]

based on proofs given by Janson et al. [161]. Pick a node v 2 N . If v is connected to all of
the nodes in G, then we say that v is saturated in G



Chapter 4

Dynamic Models for Longitudinal
Data

In chapter 3 we focused on models for static networks, that consider a cross-section of a real
network at a given point in time. However, real networks often contain a dynamic component.
In the language of networks, dynamics can be translated into the birth and death of edges
and nodes. For example, in a friendship network, new nodes may be introduced at any time
and old nodes may drop out due to inactivity; links of friendships and alliances may be
even more brittle. Dynamic network modeling has been a neglected sibling of static network



properties to observed data. For this reason, we view them as \pseudo-dynamic" models
and discuss three examples here: the Erd�os-R�enyi-Gilbert model, preferential attachment
model, and small-world models.

For example, we can view the Erd�os-R�enyi-Gilbert model G(N;E), itself as a dynamic
process used to generate a random graph:

� start from the graph of N unconnected nodes at time 0;

� at each subsequent time step, add a di�erent edge to the network with probability
p = E=

�
N
2

�
.

By convention, we usually �x the number of nodes at N , although we can extend the process
to allow for addition of nodes. This model assumes that edges (and nodes) are not removed
once they are added. The degree distribution for G(N;E) is binomial. But as N gets large,
Np tends to a constant, so it is approximately Poisson. Durrett [91] provides a rich discussion
for situating this dynamic description with the tradition of discrete time random walks and
branching processes. In particular, he uses this representation to explore the emergence of
the giant component described in section 3.2 (see appendix of chapter 3).

The Erd�os-R�enyi-Gilbert model is simple and easy to study but does not address many
issues present in real network dynamics. One of the major criticisms [26] of this model
centers on the fact that it does not produce a scale-free network, i.e., the resulting node
degree distribution does not follow a power law. The network literature is replete with
claims that many real networks exhibit the power-law phenomenon, (cf. [12]), and much
subsequent research has focused on how various generalizations of the Erd�os-R�enyi-Gilbert
model conform to the power law degree distribution. Molloy and Reed [219] were the �rst
to describe how to construct graphs with a general degree distribution and they went on to
describe the emergence of the giant component in that context as well [220].

Barab�asi and Albert [26] described a dynamic preferential attachment (PA) model specif-
ically designed to generate scale-free networks. At time 0, the model starts out with N0

unconnected nodes. At each subsequent time step, a new node is added with m � N0 edges.
The probability that the new node is connected to an existing node is proportional to the
degree of the latter. In other words, the new node picks m nodes out of the existing network
according to the multinomial distribution

pi =
�iP
j �j

;

where �i denotes the (undirected) degree of node i. This model, which was described much
earlier in the statistical literature by Yule [329] and Simon [269], is intended to describe
networks that grow from a small nucleus of nodes and follow a \rich-get-richer" scheme.
The assumption is that, for instance, a new web page will more likely link via a URL to
a well-known web page as opposed to a little-known one. Mitzenmacher [218] gives a brief
history of generative models for power law distributions.

The preferential attachment model of Barab�asi and Albert results in a network with





Figure 4.1: Log-log plots of degree distributions for a query data bases and a blog data base
from a company database. Left: Blog indegree and outdegree distributions. Right: Query
indegree and outdegree distributions. Source: Data from an unnamed large company, stored
in iLab, Carnegie Mellon University.

has turned into a well analyzed methodology [195] with an e�cient algorithm for model
�tting, analysis of the parameter space, and model selection. This work goes further in
understanding real network structure and provides a way for principled graph sampling.

4.2 Small-World Models

Watts and Strogatz [320] proposed a small-world model which can be thought of as a \pseudo-
dynamic" model in the sense we described in section 4.1. This one-parameter \small-world"
model interpolates between an ordered �nite-dimensional lattice and an Erd�os-R�enyi-Gilbert
random graph in order to produce local clustering and triadic closures. Bollob�as and Chung
[44] had previously noted that adding random edges to a ring of N nodes drastically reduces
the diameter of the network. The Watts-Strogatz model begins with a ring lattice with N
nodes and k edges per node, and randomly rewires each edge with probability p. As p goes
from 0 to 1, the construction moves toward an Erd�os-R�enyi-Gilbert model. They and others
who followed, studied the behavior of such small-world networks when 0 < p < 1. This
model is not dynamic although it is often used to describe networks that evolve over time.
Figure 4.2 shows a small-world graph for n = 25 nodes and 2 rewirings per node.

Kleinberg [174] introduced a variation on the small-world model where random edges are
added to a �xed grid. Starting with an underlying �nite-dimensional grid, he added shortcut
edges, where the probability that two nodes are connected by a long edge depends on the



Figure 4.2: Small-world graph for N = 25 nodes and 2 rewirings per node. The red edges
form the ring lattice and the blue edges the rewiring. This graph was generated using the
Java applet at http://cs.gmu.edu/~astavrou/smallworld.html

Several follow-up works have made adjustments to Kleinberg’s rewiring procedure in
attempt to improve the understanding and e�ciency of the navigability of networks. For
example, Clauset and Moore [72] suggested to rewire a long distance edge from node x, if
while performing a greedy walk over to y, the original topology of the network did not allow
to reach y within Tthresh steps. The edge was rewired to the place where the search gave
up (the node reached after Tthresh steps of the walk).They show that through this rewiring
procedure the network degree distribution converges to a power law, where � = �rewired.
Their work also studied �nite size e�ects and showed that �opt ! d, as n ! 1 rather
slowly.

Sandberg [260, 261] and Sandberg and Clarke [262] introduced a di�erent rewiring scheme
with the end goal to make the network more amenable to statistical analysis. Starting with
N nodes on a ring, each with two neighbor links and a long range link, the model of Sandberg
[260] randomly rewires a graph in the following steps:

� at each time step j = 1; 2; 3; : : : ; choose a random starting node x and a target node
y

 http://cs.gmu.edu/~astavrou/smallworld.html


This de�nes a Markov chain on a collection of labeled graphs. Sandberg and Clarke [262]
conjecture that when the chain achieves stationarity, the distribution of distances spanned
by long-range links is (close to) theoretical optimum for search and the expected length of
searches is polylogarithmic. They support the conjecture by a series of simulations. This
methodology has been applied to the study of peer-to-per (P2P) networks.

Durrett [91] discusses links between small-world models and stochastic processes. Typical
usage of small-world models include empirical analyses involving aggregate summary statis-
tics (see, e.g., [18; 231]). There are as yet no formal statistical methods for examining the
evolution of small-world network models and for assessing their �t to network data measured
over time.

4.3 Duplication-Attachment Models

Duplication-Attachment models were originally developed in the computer science theory
community to study the world wide web as a directed graph [175; 185]. These models aim
at describing properties of a snapshot of the web graph at a speci�c time, that is, a static
directed graph. The data generating process underlying these models, however, is explicitly
dynamic. The following example demonstrates some basic assumptions behind the dynamics.
Consider a newly added web page A, which provides a new node in the web graph. The
creator of web page A will then add hyper-links to it, which provide new directed edges in the
web graph. In particular, some of these hyper-links will point to other web pages regardless
of whether their topical content matches the topical content of web page A, but most of these
hyper-links will point to web pages with a topical content that closely matches the topical
content of web page A.

Technically, there are many possible speci�cations and variants. The basic duplication-
attachment model proposed and analyzed by Kumar et al. [185] is as follows. Denote the
graph at time t as Gt = (Nt; Et). At each step, say t + 1, one new node N is added to Gt.
The new node is connected to a prototype node m, chosen uniformly at random among those
in Nt. Then d out-links are added to node N . The ith out-link is chosen as follows: with
probability � the destination node is chosen uniformly at random among those in Nt, and
with probability 1� � the destination node is taken to be the ith out-link of the prototype
node m. Note that this is possible since the algorithm generates a constant degree graph.
Rather than proposing estimation strategies for the two parameters (�; d) of this particular
duplication-attachment model, the goal of the analysis of Kumar et al. [185] is on deriving
results about topological properties of duplication-attachment graphs, described as functions
of the two parameters (�; d). Recent extensions of this model include a model where frac-
tions of both out-links and in-links of the prototype node m are copied by the newly added
node N [193]. The goal of the analyses in this line of research, however, remains that of
replicating properties of observed graphs, with a few exceptions. In the biological context,
duplication-attachment models have appeared to be useful in modeling protein-protein in-
teraction networks. For example, Ratmann et al. [245] proposed a mixture of preferential
attachment and duplication divergence with parent-child attachment model to assess evo-
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lutionary dynamics of protein interaction networks of H. pylori and P. falciparum. They
proposed a likelihood-free MCMC-based routine to estimate posterior of network summary
statistics. A more general review of work in modeling dynamics (evolution) on the basis of
protein-protein interaction data is available in [246].

Wiuf et al. [326] have developed a recursive construction of the likelihood for duplication-
attachment models, e�ectively enabling principled statistical data analysis, estimation and
inference.

4.4 Continuous Time Markov Chain Models

The use of continuous Markov processes to model dynamic networks was �rst proposed by
Holland and Leinhardt [148] and Wasserman [312] and most recently studied by Snijders
and colleagues [275; 276]. As shall become clear in this section, continuous Markov process
models (CMPM) are intimately tied to the ERGM models described in section 3.6. Within
the CMPM family, network edges are taken to be binary (either absent or present, but
not weighted), and the evolution occurs one edge at a time. Model variants arise due to
the many possible speci�cations of edge change probability. Some exceptions to this general
approach include the party model of Mayer [206], where multiple edges are allowed to change
at the same time, and the work of Koskinen and Snijders [179], which deals with Bayesian
parameter inference methods for the case where not all edge modi�cations are observed.

We begin by providing a quick reminder of continuous Markov processes, borrowing
notation from [275]. De�ne fY (t) j t 2 T g to be a stochastic process, where Y (t) has a �nite
outcome space Y and



a binary vector of length
�
N
2

�
. We use the shorthand qij(y) to denote the propensity for

the edge between node i and j to ip into its opposite value under con�guration y. The
function qij(y) completely speci�es the dynamics of the network model. We now review
several variants of CMPM which di�er only in their de�nition of qij(y).

Independent arc, reciprocity, and popularity models. The independent arc model
employs the simplest de�nition of qij(y):

Independent arc model: qij(y) = �yij
; (4.4)

i.e., Yij changes from 0 to 1 at a rate �0, and from 1 to 0 at rate �1. In this model,
modi�cation to one edge does not depend on the setting of other edges. The model is simple
enough that the transition probabilities Pr(t) can be derived in closed form (see, e.g., Taylor
and Carlin [292] p. 362-364). Maximum likelihood parameter estimation for this model was
discussed in [278].

In the reciprocity model, the rate of change in yij depends only on the reciprocal edge
yji:

Reciprocity model: qij(y) = �yij
+ �yij

yji: (4.5)

Thus, if no link currently exists between nodes i and j, then the propensity for adding
either directed edge is �0; if one directed edge exists, then the reciprocal edge is added with
propensity �0 + �0. If one directed edge exists, then it is deleted with rate �1. If both edges
exist, then the deletion propensity for either is �1 + �1. The transition matrix Pr(t) can be
derived but has a complicated form [189; 272].

Along the same line of development, the popularity model and the expansiveness model
[312; 313] de�ne the change rate for edge yij to be dependent on y+j, the in-degree of node
j, or yi+, the out-degree of node i:

Popularity model: qij(y) = �yij
+ �yij

y+j; (4.6)

Expansiveness model: qij(y) = �yij
+ �yij

yi+: (4.7)

Edge-oriented dynamics. Snijders [276] outlines two categories of transition dynamics:
edge-oriented and node-oriented. In both cases, the intensity matrix is factored into two
components: one controls the opportunity for change, and the other speci�es the propensity
of change. More precisely, the continuous time Markov process is now split into two sub-
processes; the �rst operating in the continuous time domain and dictating when a change
should occur; the second dealing with the probability of the discrete event of individual
edge ips. Both edge-oriented and node-oriented dynamics can be interpreted as stochastic
optimizations of a potential function f(y) on the network con�guration. The di�erence is
that, in the edge-oriented case, f



Using y(i; j; z) to denote the con�guration where the edge eij has the value z 2 f0; 1g,
edge-oriented dynamics can be written in the following general form:

qij(y) = �pij(y); (4.8)

where

pij(y) =
exp(f(y(i; j; 1� yij)))

exp(f(y(i; j; 0))) + exp(f(y(i; j; 1)))
: (4.9)

Thus, in edge-oriented dynamics each edge follows an independent Poisson process, so that
the time until the next event has an exponential distribution with parameter �. When an
event occurs for edge i! j, the edge ips to its opposite value with probability pij(y).

The potential function f(y) is usually de�ned as a linear combination of network statis-
tics:

f(y) =
X
k

�ksk(y): (4.10)

This should start to look familiar. Indeed the CMPM process with edge-oriented dynamics
is equivalent to the Gibbs sampling process for ERGMs (where the next edge to be updated
is selected randomly). The statistics sk(y) for node k take on the usual forms (see Table 4.1).

Number of directed arcs: s1(y) =
X
ij

yij

Number of reciprocated arcs: s2(y) =
X
ij

yijyji

Number of pairs of arcs with the same target: s3(y) =
X
ijk

ykjyji

Number of pairs of arcs with the same origin: s4(y) =
X
ijk

yikyij

Number of paths of length two: s5(y) =
X
ijk

yijyjk

Number of transitive triplets: s6(y) =
X
ijk

yijyikyjk

Table 4.1: The table of network statistics for a directed social network.

The statistics in Table 4.1 assume directed graphs, however it is easy to come up with
the corresponding statistics for undirected graphs. For example, in the undirected case all
the edges are \reciprocal" and thus s1 and s2 are combined into s0(y) =

P
i;j>i2N yij.

Due to their close relations to ERGMs, edge-oriented models su�er the same fate of
degeneracy. For example, if the parameter � for transitive triplets is not too small, then
with high probability the simulated network will be a complete graph. However, compared
to static networks, degeneracy in the longitudinal case is not as much a concern, as the
complete graph will only emerge at some distant time in the future.
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Node-oriented dynamics. Fully node-oriented dynamics [275] de�nes the intensity ma-
trix as

qij(y) = �ipij(y); (4.11)

where

pij(y) =
exp(fi(y(i; j; 1� yij)))P
h6=i exp(fi(y(i; h; 1� yih)))

: (4.12)

Thus the independent Poisson processes for determining edge change opportunity are now
de�ned for each node (with intensity �i) as opposed to each edge. Given the opportunity for
edge change, each node seeks to optimize its own potential function as de�ned by

fi(y) =
X
k

�ksik(y): (4.13)

The function fi(y) is similar to the global potential f(y) in Equation 4.10 but only aggregates
over the local neighborhood of node i. Node i favors changing the incident edge that would
lead to the biggest increase in its potential.

Edge-node mixed dynamics. Snijders [276] also suggested a form of mixed dynamics
where the opportunity for change is edge-oriented, but the potential functions are node-
oriented:

qij(y) = �
exp(fi(y(i; j; 1� yij)))P
h6=i exp(fi(y(i; h; 1� yih)))

: (4.14)

Thus the opportunity to modify each edge i! j follows independent Poisson processes with
parameter �. But given the opportunity for change, the probability of an actual ip depends
on node i’s local network con�guration.

Remark. Parameter estimation in CPCM models has until recently been done via method
of moments, where the expected values are obtained through MCMC on simulated networks
[273]. Koskinen and Snijders [179] proposed a Bayesian inference method that allows for
computation of the posterior distribution of the parameters and treats missing values more
adequately. For details of the procedure, please refer to Koskinen and Snijders [179].

4.5 Discrete Time Markov Models

In this section, we outline three recent proposals of dynamic network models operating in
the discrete time domain (see also [22]). All three models have the Markov property and
represent the likelihood as a sequence of factored conditional probabilities

Pr(Y 1; Y 2; : : : ; Y T ) = Pr(Y T j Y T�1) Pr(Y T�1 j Y T�2) � � �Pr(Y 2 j Y 1)); (4.15)

where f1))ih)).7(Pr()]TJ/F43 11.299-2936TJ/F4g8d [(Y)mn.247 TdJ/F45(Y)mn665TJ/F18-





4.5.2 Dynamic Latent Space Model

Sarkar and Moore [264] extended the static latent space model of Ho� et al. [146] (cf. sec-
tion 3.9



known machine learning researchers over time. The dynamics of the researchers’ latent
positions allowed for an insight into the evolution of the machine learning community.

Sarkar et al. [265] also proposed a richer model based on [124], which improved upon
previous work in two ways. One of the di�erentiating features of this work was the ability to
simultaneously embed words and authors into the latent space, which allowed for representa-
tion of a two-mode network. The major advantage, however, was the inference method|the
authors proposed a Kalman-�lter like dynamic procedure, which allowed for estimation of
the posterior distributions over the positions of the authors in the latent space. Proposed
procedure was applied to a simulated NIPS dataset.

The impact of this line of work is dichotomous: �rst, it o�ers an explanation of the
network at every time step, and second, it enables an accurate and e�cient prediction of the
state of the network at a time step in the future. The proposed inference procedures made it
possible for network modeling to scale to large dynamic collections of data. The drawback of
this approach is the lack of an explicit mechanism that could explain the dynamics behind
the real networks.

Another latent model for citation networks was developed in the physics community.
Leicht et al. [190] proposed to use latent variables to capture the grouping of papers that
have similar citation pro�les over time. The network in this case is a directed acyclic graph
and the nodes are papers rather than authors. Using as example a set of opinions from the US
Supreme Court and their citations between the years of 1789 and 2007, the authors showed
how a simple latent model was able to recover, in a completely unsupervised manner, the
di�erent eras in US Supreme court opinion references. The parameters of the model, except
for the number of latent classes, were estimated using an EM algorithm. Di�erent numbers
of latent classes were tested and each revealed something new about the underlying data.
The authors also compared the latent method to a clustering based on network modularity
[233]. Even with the information about time (directionality in the graph) removed, the latent
variable model was still able to discover the same split between two groups of opinions that
happened around 1937. The network modularity clustering in a way validated the outcome
of the latent model.

In a separate experiment, Leicht et al. [190] showed that deterministic approaches such
as \hubs and authorities" and eigenvector centrality [171] discovered interesting network
properties that were not revealed by the statistical models. The deterministic analyses
showed several signi�cant drops in the age of authorities sited, meaning that once in a while,
the younger set of opinions became the new authorities and that the process happened in
a \decisive" manner, rather than gradually. In this way, deterministic network analysis
approaches complement statistical models.

4.5.3 Dynamic Contextual Friendship Model (DCFM)

The dynamic contextual friendship model (DCFM) of Goldenberg and Zheng [128] repre-
sents an attempt to capture several aspects of the complexity of the evolution of real social
networks over time. In a real-life friendship network, people may meet and interact with
each other under di�erent contexts (e.g., school, work projects, social outings, etc.), and the
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strength of interpersonal relationships change over time based on these interactions. DCFM
o�ers such a mechanism for network evolution, where edges have weights that indicate the
strength of the relationship, and each node is given a distribution over social interaction
spheres (contexts). Context is de�ned to be any activity where people may interact with
each other. At each given time step, each node chooses a random context according to the
node’s distribution over contexts. Nodes that appear in the same context update the weights
of the links between them. The probability of a weight increase (or decrease) depends on
whether the pair had a chance to meet (a coin toss in a model) and the \friendliness" pa-
rameter of the individuals involved. The possibility of both positive and negative weight



Figure 4.3: Log-log plot of the degree distributions of a network with 200 people. �i is drawn
from Beta(1; 3) for the plot on the left, and from Beta(1; 8) for the right hand side. Solid
lines represent a linear �t and dashed lines quadratic �t to the data. Contexts are drawn



changes contexts and is very friendly or because the contexts themselves tend to be large.
Also, weighted network data are hard to come by and thus pseudo-weights often have to be
used.

The DCFM model is important in its own right: the life-mimicking, rich generative



Chapter 5

Issues in Network Modeling

There are a number of major statistical modeling and inferential challenges in the analysis of
network data that go well beyond those described in previous sections of this article. These
relate to both the quality and the ease of statistical inference and we mention a few of them
here:

Network Visualization. With the rise of online social networks and network modeling,
we have seen a proliferation of visualization tools, especially those based on variations of
constraint-based spring model algorithms, e.g., see the discussion and references in Shnei-
derman and Aris [267]. The automated algorithms often use node degrees or some form
of distance metric between nodes to arrange their placement. For example, SoNIA1 is a

http://sonia.stanford.edu/
http://stat.gamma.rug.nl/siena.html


their own drawbacks such as sensitivity to the starting point, are not realizable for networks
on a really large scale. The key to network modeling and parameter estimation is to take



selected subgraphs. For details, see the many papers by Ove Frank [109; 295] and oth-
ers [125; 135; 258]. Wiuf and Stumpf [325] and Stumpf and Thorne [288] recently adopted



known links|information that is incomplete and available only for a few organisms. In
the sociological literature on organizations, there is often interest in distinguishing among
organizations on the basis of their network structure, so there would clearly be interest in
utilizing methodology for prediction based on network structure. Because making predictions
of various sorts from dynamic network models �ts well within the machine learning paradigm,
we expect to see many more papers on the topic in the not too distant future.

Embeddability. Underlying most dynamic network models is a continuous time stochastic
process even though the data used to study the models and their implications may come in
the form of repeated snapshots at discrete time points (epochs)|a form of time sampling as
opposed to node sampling referred to above|or cumulative network links. In such circum-
stances we need to take special care in how we represent and estimate the continuous-time
parameters in the actual data realizations used to �t models. This is known in the statistical
literature as the



Chapter 6

Summary



Erdös-Rényi-Gilbert random 
graph models

(Gilbert 1959, Erdös-Rényi 1959)

Small-W

Figure 6.1: Network summarizing the relations between models discussed in our review.
White nodes denote static models, yellow nodes { \pseudo-dynamic" and green { dynamic
models. Arrows indicate inspiration or inuence of the model at the source on the model at
the target.

equivalence of the nodes, whereas latent space models assume the existence of an embedding
of the network in a low dimensional space. These models allow for better understanding of
the data in cases where it is believed to contain hidden structure.

We divided the category of dynamic models into continuous time Markov models and dis-
crete time Markov models. CMPM (section 4.4) assumes that the adjacency matrix evolves
according to a continuous Markov chain whose intensity matrix can depend on various edge
and node dynamics. Discrete time Markov network models deal with a set of network snap-



statistics or machine learning perspective, the biggest breakthroughs are to be made in the
areas of inference and dynamic modeling. Creating a model or perhaps �xing an existing
one in such a way that provides realistic generative and inference mechanisms which can
identi�ably infer parameters of a large real world network would make a great contribution
to the statistical network modeling community.
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