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Abstract

This is the beginning of Network Science. The journal has been created because network

science is exploding. As is typical for a field in formation, the discussions about its scope,
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While there is much overlap in disciplinary network research, the inherent

disciplinary boundaries still tend to create silos of different interests, methods,

and goals. If network science is to be one science, rather than separate and scattered

research communities, or a set of tools that researchers use to analyze networks, the

silos need to be dismantled while at the same time recognizing existing disciplinary

practices and values.

We write this editorial to help establish common grounds for our journal and

its field—grounds which should allow Network Science to excel above and beyond

disciplinary boundaries. We envision our commons as much wider than some current

interpretations of the term network science. We will therefore try to delineate the

uniting elements rather precisely on the next few pages.

Our major statement is that we view network science as the study of the collection,

management, analysis, interpretation, and presentation of relational data. But first, a

few remarks on our perceptions of the current state of the field.

The claim that “networks are everywhere” has become almost routine. Frequently

mentioned examples of “everywhere networks” include the Internet and other

infrastructure networks, social, political and economic networks, scientometric and

text-representational networks, as well as food webs and molecular-level biological

networks. And there is a host of other, less commonly mentioned networks in many

more research areas.

Networks and hence the network paradigm have become scientifically relevant

across disciplinary boundaries. But many have asked: Is the network paradigm

nothing more than an in vogue buzz phrase? Clearly, a science of networks requires
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of the network paradigms. Political Science is a good example—network science has

had a tremendous impact on this field, just in the last five years.

If anything, network science is a revolution a long time in the making. Despite

frequent claims by some, network science did not suddenly appear when it was

realized in the mid-1990s that networks could be models of complex systems. Such

a limited definition of network science is simply inappropriate—it is important to

recognize the many scientific antecedents of what we do. Network approaches have

developed in many areas over the past two decades (physics, biology, economics, for

example) because a relational perspective clearly added relevance to the discipline.

The roots of network science are particularly strong in social psychology, sociology,

and anthropology, which has led to another misperception, namely that network

science is the application of network analysis in disciplines other than the social

and behavioral sciences. Sometimes the phrase social network analysis (“SNA”) is

used to label everything that is network-related, even when the network aspects of
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phenomenon network concept network data
abstraction representation

network model

Fig. 1. The elements of network models.

1. A specification of how the phenomenon (in general, i.e., more generally than

this particular instantiation) is abstracted to a network.

2. A specification of how this conceptual network is represented in data (e.g.,

measured or observed).

As representation is usually defined via an isomorphism, i.e., a one-to-one mapping

between structures preserving relations, a phenomenon cannot be represented
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According to our framework there are actually two aspects to network theory.

On the one hand, network theories can suggest and explicate, for given research

domains, how to abstract phenomena into networks. This includes, for example,

what constitutes an individual entity or a relationship, how to conceptualize the

strength of a tie, etc. In such applied network science, the corresponding theories

are epistemological—network theories bound to specific classes of phenomena. On

the other hand, network theories can deal with formalized aspects of network

representations such as degree distributions, closure, communities, etc., and how

they relate to each other. In such pure network science, the corresponding theories

are mathematical—theories of networks.

Claim 2

There are theories about network representations and network theories about

phenomena: both constitute network theory.

Establishing network theory can be a challenge in disciplines that have a highly

individualized history. But without a theory about how to conceptualize a phe-

nomenon as a network, there is no meaning to a formal theory of network data. We

conclude that networks are not just an add-on to existing approaches—e.g., a means

to add a little more explained variance in a social science research project—but

require new theorizations and different thinking.

A network abstraction involves ontological commitment to a few basic features

that are seen as scientifically relevant to the representation of a phenomenon. The

features of a network abstraction include at least the following: individual elements;

pair-wise relationships between those elements; and a global or macro- patterning

that can be considered as network structure. This basic description may not be

sufficient for all circumstances (e.g., think of longitudinal phenomena) and can be

extended in many different ways, but these are fundamental features if we are to

call the abstraction a network.

For example, a friendship network is a way of abstracting a social phenomenon

into a comparatively simpler and much more general form of relationships between

actors. The actual phenomenon is, of course, much richer: We are abstracting already

quite substantially just by conceiving of the individuals as comparable entities of a

common kind.

By postulating a friendship network in (say) a school classroom of 25 students,

we have taken a theoretical step that is non-trivial. We have supposed that separate
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So the claim that “networks are everywhere,” if it is meaningful as network science,

is not just a statement that we can see many things in the world in relational terms,

but an implicit theoretical statement that scientific explanation of many phenomena

is aided by abstraction to such a connected, systemic representation. Otherwise, it

is no more than a statement that we can see the world in particular ways: after all,

colors are everywhere, too, but no one to date has thought it scientifically helpful to

understand classroom processes in shades of pink and purple.

The essential point must be that the abstraction into a network is helpful to

scientific inference, permitting knowledge to develop. It need not be the case that

this will always be so. But we need an empirical base to show that the network

representation gives scientific traction.

Claim 3

Network science should be empirical—not exclusively so, but consistently—and its

value assessed against alternative representations.

3 Network data

We have argued that networks are abstractions represented in data, but we have yet

to discriminate them from other conceptualizations. We are now going to do so by

first looking at characteristics of standard types of data to be able to then highlight

the defining features of network data.

The input to data analysis consists of values of variables. Variables are generic

placeholders characterizing the essential features of an abstract concept, thus

allowing to formulate analytical steps generically as well. The instantiating values

are usually obtained via some form of observation such as measurement. Note,

however, that different original phenomena may yield the same representation in

data.

Our definition of what constitutes network data hinges entirely on how the

involved variables are related. It is thus independent of the phenomena being
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A x
a 1
b 4
c 1
d 2
e 3
f 6

(a) standard table: variables in columns indexed with unrelated entities
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In the above example, variables gender, education, and income are of different

types: While all are defined on the common domain A, the range of values they may

assume is different. Even more importantly, these ranges exhibit a different level of

structuring. The range of gender, for instance, is binary on a nominal scale, i.e.,

the only defined relation is an equality predicate. In other words, the comparison of

two values yields either equality or inequality, and this is the only information we

can get out of comparison. For instance, we cannot add or rank values of gender

variables.

Assume now that education refers to the highest degree obtained by an individual.

It may then be valid to compare two values and conclude that one indicates a higher

level of education than the other, and this relation could be transitive. In this case,

the range is ordered and the variable is on an ordinal scale of education. Finally,

we may compare income by amount, but it may also be meaningful to compute

differences and ratios. The range of the variable income can therefore be considered

to be a continuous ratio scale. If, however, 0 is not meaningful for a continuous

range as in, e.g., measuring IQ, it is not appropriate to calculate ratios and the scale

is called interval.

The interesting thing to observe is that a range is usually not just a set of possible

values but a set with additional relations such as an ordering or operations, i.e.,

structured. The structure of a range is crucial to know about because it determines

the kinds of analyses and interpretations that are justified.

While the range of attributes is structured, in much of science, the domain on

which variables are defined is assumed to have no structure, i.e., simply a set. This

may be for good reason. If we are interested in associations between, say, education

and income controlled for age, we actually do not want there to be relations

between individuals that also moderate the association. Much of statistics is in fact

concerned with detecting and eliminating such relations.

This is the single most important difference with network science, where the

domains of at least some variables are explicitly set up to have structure. The

potentially resulting dependencies are not a nuisance but more often than not they

constitute the actual research interest.

3.2 Step 2: Dyadic data

Before introducing the structure of network-variable domains, consider as an

intermediate step dyadic variables, i.e., variables defined on pairs of items. A classic

example of this kind is the study of (populations of) couples. Here variables, such

as duration of marriage, number of common children, etc., are associated with the

couples, whereas further variables, such as age, occupation, etc., are associated with

the individuals that make up the couples.

As illustrated in Figure 2(b), the domain of couple-level variables is therefore

composed of pairs of individuals that cannot be treated as a new, atomic unit because

it is important to maintain individual identities to be able to find between-variable

associations in individual- and couple-level data. Similarly, attributes of couples

cannot be represented in individual-level variables because this means eliminating,

for instance, possible between-variable associations of individuals and marriages

that are moderated by attributes of spouses.
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because they are good friends who share information relevant for their salary

negotiations. In other words, rather than being a dependence between two different

types of variables, now we have a dependence within the values for one type

of variable. This is a complex dependence because it cannot be aggregated or

averaged in distributional terms. It corresponds to the kind of dependency ana-

lyzed in spatial statistics (with proximity rather than friendship as the underlying

mechanism).

Yet, network dependence goes further because dependence does not just stop

at actor attribute variables. It may apply within the set of network variables as

well. Any network variable is defined on a domain of pairs of individuals (i.e.,

the dyads), and the incidence structure of the domain captures the potential for

within-variable dependencies. A network tie variable takes a value, often binary,

sometimes valued, indicating whether there is or not a tie between its two individuals.

The crucial point is that the presence of one tie may influence the presence of

another. In other words, ties are not necessarily moderating variables, but there

may be dependencies within the tie variable themselves. While this will appear an

unfamiliar point of view to some, it is merely a statement that networks may be sys-

tematically patterned. Without dependence among ties, there is no emergent network

structure.

In the explicit form of stochastic models, these ideas entered network analysis

from spatial statistics. They are deeply at the heart of network theory, even if seldom

overtly addressed. Entire sets of methodological approaches, such as exponential-

family random graph models, depend on modeling tie dependence appropriately.

With independence among network tie variables, we would be left only with

the simple random networks known as Bernoulli graphs, Erdős-Renyi graphs, or

the G(n, p) model. It should be noted that this view does not require a statistical

perspective; combinatorial invariants of graphs that represent networks are of

interest exactly for the same reason as descriptors of structural features.

Because almost all the networks that we observe bear little resemblance to simple

random graphs, tie dependence is empirically very common. For instance, a familiar

network process is that of preferential attachment, whereby actors “prefer” to be

attached to popular actors so that the rich get richer. The presence of many ties

centered on one popular individual may attract the presence of additional ties to

that same individual.

Dependence among ties is thus the means whereby network structure self-organizes

and evolves, or emerges, but it is not simple. This is why network science is often

referred to as the study of complex networks. It remains a research question to

establish plausible types of tie dependence. Theories or methods that wish away these

dependencies are ignorant of the structure of the domain, and thus contradictory to

a network model.

While the choice of representation is indeed a matter of convenience and hence
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At Network Science, we anticipate to publish work on all kinds of network data,
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researching in a qualitative or quantitative way, but that the understanding of the

phenomenon treats relational connectivity and dependence as central.

4 The emerging science of networks

In light of the above discussion, we hope that this journal will provide a shared intel-

lectual space for network scientists working in many different fields to communicate

with each other about relational data.

To get there, we must recognize our various shared and disparate histories,

recognize that this field is quick-evolving, commit to compatible languages about

networks, and be willing to speak outside narrow disciplinary interests to broader

communities of scholars. The benefit, we believe, will be well worth the effort.

As editors of a journal attempting to encompass a broad field with a long and

storied history, we have already rejected the idea that network science “began” with

some kind of new discovery or even a Kuhnian paradigm shift tipped off by work

originating from physics, no matter how interesting or influential. Network science

is neither tied to nor “owned” by any other field.

We should not be ignorant of the forebears of our emerging science, and decades

of empirical research. The past 15 years have seen a boom of interest in networks

that does not overtly trace its roots to, for example, the sociometry of Moreno or

the sociology of Simmel. Even this older tradition has long borrowed from other

fields such as graph theory, physics, or statistics as it has developed.

Neither are these the sole progenitors of what we now recognize as network science.



Editorial 13

This goal transcends disciplinary boundaries but we do have disciplinary goals

as well. Our major fields of editorial coverage (with area editors in parentheses)

include information science (Adamic), computer science and mathematics (Brandes),

communication, engineering and management (Contractor), economics (Goyal),

political science and psychology (Robins), public health and medicine (Valente),

physics (Vespignani), and statistics and sociology (Wasserman). Each editor has

identified key topics and debates within their area that they would like to see

addressed in the coming issues of Network Science and that list follows this editorial

as an attachment. Consider these an open call for work, but also consider Network

Science as welcoming of work that pushes this new science forward.

We are excited by the prospects of this new journal, Network Science. We

believe there is a distinctive science of networks that crosses traditional disciplinary

boundaries. It is ready to be brought together in a coherent form that transcends

disciplinary silos. We encourage all our readers to contribute to the journal to help

achieve these goals.
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Notes from the area editors

Lada Adamic, editor for information science

Information is an interdisciplinary field, just as network science. Therefore, a broad

range of topics can fall under this heading, including networked information (e.g., the

web, Wikipedia, citation networks), information dynamics in online, organizational,

and other social networks, and networks that can be constructed by representing

relationships between data (e.g., health, scientific, or historical data). We invite

contributions that include novel theoretical models, empirical studies, and methods

and applications pertaining to information networks.

Ulrik Brandes, editor for computer science and mathematics

We invite articles presenting original research in structural and computational

network science. This includes the study of network representations, algorithms,

data management, and visualization. A typical theory paper uses graph theory,

combinatorics, algorithmics, machine learning, information retrieval, or computer

graphics methods, whereas a systems paper concentrates on design aspects, im-

plementation, and performance assessment. Novel uses of network approaches in

application areas, and in particular those relating to social media, may also be

suitable for the information science area.
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and interaction of individual attitudes, traits and behaviors, and social network

ties, including network-based social influence. Finally, we are also interested in the


