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Networks are a popular tool for representing elements in a system
and their interconnectedness. Many observed networks can be viewed
as only samples of some true underlying network. Such is frequently
the case, for example, in the monitoring and study of massive, online
social networks. We study the problem of how to estimate the degree
distribution { an object of fundamental interest { of a true underlying
network from its sampled network. In particular, we show that this
problem can be formulated as an inverse problem. Playing a key role
in this formulation is a matrix relating the expectation of our sam-
pled degree distribution to the true underlying degree distribution.
Under many network sampling designs, this matrix can be de ned
entirely in terms of the design and is found to be ill-conditioned.
As a result, our inverse problem frequently is ill-posed. Accordingly,
we o er a constrained, penalized weighted least-squares approach to
solving this problem. A Monte Carlo variant of Stein's unbiased risk
estimation (SURE) is used to select the penalization parameter. We
explore the behavior of our resulting estimator of network degree dis-
tribution in simulation, using a variety of combinations of network
models and sampling regimes. In addition, we demonstrate the ability
of our method to accurately reconstruct the degree distributions of
various sub-communities within online social networks corresponding
to Friendster, Orkut, and LiveJournal. Overall, our results show that
the true degree distributions from both homogeneous and inhomoge-
neous networks can be recovered with substantially greater accuracy
than re ected in the empirical degree distribution resulting from the
original sampling.

1. Introduction. Many networks observed or investigated today are
samples of much larger networks (Kolaczyk, 2009, Ch 5). LeG = (V; E) be
a graph representing a network, with vertex setV and edge sete. Similarly,
let G =(V ;E )denote a subgraph ofG, representing a part of the network
obtained through some sort of network sampling. Although practitioners
typically speak of the network when presenting empirical results, frequently

Partially supported by AFOSR award 12RSL042 and NSF grant CNS-0905565. This
work was begun during the 2010{2011 Program on Complex Networks at SAMSI.
1
imsart-imsgeneric ver. 2012/08/31 file: TSWLatexianTemp_000052.tex date: December 23, 2014



Y. ZHANG, E.D. KOLACZYK, AND B.D. SPENCER/ 2

it is only a sampled versionG (or some function there of, such as when
sampling yields estimates of vertex degrees directly) of some true underlying
network G that is available to them, either by default or design. A central
statistical question in such studies, therefore, is how much the properties of
the sampled network re ect those of the true network.

Sampling is of particular interest in the context of online social networks.
One reason for such interest is that these networks are usually very large.
For example, social networks from Friendster, LiveJournal, Orkut, and Ama-
zon have been studied in Yang and Leskovec (2012) having, respectively,
1177M; 4:.0M; 3:0M and 0:33M vertices and 25861M , 349M, 1172M and
0:92M edges. Similarly in Ribeiro and Towsley (2010), networks from Flickr
and Youtube were studied having millions of vertices and edges as well.
The large size of these social networks makes it costly querying the entire
network, particularly if the goal is to monitor these networks regularly over
time. In addition, the decentralized nature of many such networks frequently
means that few { if any { people or organizations have complete access to
the data.

The topic of network sampling goes back at least to the seminal work
of Ove Frank and his colleagues, starting in the late 1960s and extending
into the mid-1980s. See Frank (2005), for example, for a relatively recent
survey of that literature. With the modern explosion of interest in complex
networks, there was a resurgence of interest in sampling. Initially, the focus
was on the simple awareness, and then understanding, of whether and how
sampling a ects the extent to which the shape of the degree distribution
of the observed network G re ects that of the true network G. Seminal
work during this period includes an important empirical study by Lakhina
et al. (2003), in the context of traceroute sampling in the Internet, with
followup theoretical work by Achlioptas et al. (2005), and work by Stumpf
and colleagues (Stumpf and Wiuf, 2005; Stumpf, Wiuf and May, 2005, e.g.),
motivated, among other things, by networks arising in computational biol-
0gy.

The focus on sampling of online social networks, as described above, is
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examples in this highly active area include Ahn et al. (2007), Ahmed et al.
(2010), Ahmed, Neville and Kompella (2011), Ahmed, Neville and Kompella
(2012), Maiya and Berger-Wolf (2010a), Maiya and Berger-Wolf (2010b), Li
and Yeh (2011), Yoon et al. (2011), Shi et al. (2008), Mislove et al. (2007),
Lu and Bressan (2012), Lim et al. (2011), Gjoka et al. (2010), Gjoka et al.
(2011), Wang et al. (2011), Zhou et al. (2011), Kurant et al. (2011), Kurant,

Markopoulou and Thiran (2011), Salehi et al. (2011), Mohaisen et al. (2012),
Jin et al. (2011).

In all of these papers, there is a keen interest in understanding the extent
to which characteristics of the network G are re ective of those of G. Typical
characteristics of interest include degree distribution, density, diameter, the
distribution of the clustering coe cient, the distribution of sizes of weakly
(strongly) connected components, Hop-plot, distribution of singular values
(vectors) of the network adjacency matrix, the graphlet distribution, the
vertex (edge) label density, and, the assortative mixing coe cient.

Here, in this paper, the network property we focus on is degree distribu-
tion. The degree distribution of a network G, denoted by ff 4g, speci es the
proportion f 4 of vertices to have exactlyd incident edges, ford=0;1; .t
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ill-conditioned. As a result, the estimation of f must be handled with care,
since naive inversion of ill-conditioned operators in inverse problems typi-
cally will in ate the “noise' accompanying the process of obtaining measure-
ments, often with devastating e ects on our ability to recover the underlying
object (e.g., function or density). Here we o er, to the best of our knowledge,
the rst principled estimator of a true degree distribution f from a sampled
degree distribution f . In particular, we propose a constrained, penalized
weighted least squares estimator, which, in particular, produces estimates
that are non-negative (by constraint) and invert the matrix P in a stable
fashion (by construction), in a manner that encourages smooth solutions
(through a penalty).

The rest of the paper is organized as follows. In Section 2 we provide a
detailed characterization of our inverse problem, discussing the nature of
the operator and the distribution of noise. In Section 3 we describe our pro-
posed approach to solving this inverse problem, including a method for the
automatic selection of the penalization parameter. In Section 4 we provide
results of a simulation study, in which we study the impact on the perfor-
mance of our estimator of various parameters, including the total number
of vertices, the density of the network, sampling rates and network types.
In Section 5, we return to the primary application of interest here, that of
monitoring online social networks. There we demonstrate the ability of our
method to simultaneously reconstruct accurately the degree distributions
of various sub-communities within online social networks corresponding to
Friendster, Orkut, and LiveJournal. Finally, some additional discussion and
conclusions may be found in Section 6.

2. Characterizing the Inverse Problem. In solving inverse prob-
lems generally, it is important to understand the nature of both the operator
and the noise. Here the operator, in the form of the matrix P, will derive
entirely from the network sampling design. At the same time, the “noise' (or,
more formally, the randomness in our measurements) also derives from the
sampling design. This linking of both operator and noise to our sampling
lends a certain element of uniqueness to our particular inverse problem, the
nature of which we aim to characterize in this section.

2.1. Nature of the problem. To begin with, assume we know the total
number of vertices n, in the underlying network. This is a reasonable as-
sumption in the cases of, for example, sampling a phone call network, or
surveying among a class of students for their interactions. It is also not
unreasonable in the context of many online social networks where, for ex-
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ample, this may either be readily available to those who own the network or
reported to the community as a basic summary statistic (e.g., the number
of members with active pages on Facebook). Thus we know the degree dis-
tribution f if and only if we know the degree countsN = (Ng;N1;  ;Nm),
where Nk
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(i.e., high-frequency) at larger values ofi. Since most degree distributions
encountered in practice, as well those induced through common choices of
random graph models (some examples of which we use in Section 4), are
relatively smooth, typically with either exponential or power-law behavior

in the tails, intuitively it is the rst handful of right singular vectors upon
which a sensible estimator should be based. The stability of this estimator
can be summarized through the condition number ofP
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matrix. We consider them ordered from simpler to more complex. We refer
readers to Kolaczyk (2009, Ch 5) for additional background on network
sampling and a more comprehensive list of sampling designs.

2.2.1. Ego-centric and one-wave snowball sampling.Ego-centric sam-
pling (also called unlabeled star sampling) is a simple, non-adaptive (con-
ventional) sampling design. As Handcock and Gile (2010) write that \[a]
sampling design is conventional if it does not use information collected dur-
ing the survey to direct subsequent sampling of individuals. . . [and] a sam-
pling design [is] adaptive if it uses information collected during the survey
to direct subsequent sampling, but the sampling design depends only on the
observed data." Under ego-centric sampling, rst a set of vertices is selected
according to independent Bernoullip) trials at each vertex. Then all edges
incident to the selected vertices are observed. In this case, the operatd® is
a diagonal matrix with the sampling rate p at each diagonal position, i.e.,

(p fori=j=0;1 ;M

2.4 Pego(i;j ) =
@4 eoolli]) 0 fori;j =0; ;M; i6]j:

A natural eyF30 108ui
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designs we consider with known and constant matrixP would be the logical
point of departure for research on correcting the sampling bias of the degree
distribution in more complex adaptive designs.

For a diagonal P matrix, the singular values are equal to the diagonal
elements. Both the left and right singular vectors are the canonical set of

basis vectorsfejgh, !, where ¢ contains a 1 at theith entry and 0 at all
the other entries. SincePego = | p, where | is the identity matrix, Pego

is not ill-conditioned at all. To estimate the degree count vectorN we need
only scale the observed degree count vectdd by 1=p. That is, the naive
estimator is Klpave = N =p.

In one-wave showball sampling, the observed degree counts are biased,
because in the second round of vertex selection, there is more chance to
select the vertices that have more connections. The observed degree count
vector therefore can be thought of as moving to the right of the true degree
count vector. Hence, at a minimum, a good estimator should correct the
observations by moving the distribution back to the left. How di cult this
task may be is summarized by the condition number ofPsnow, Which is equal
to
(2.6) Psnow(M; M) _ 1 a1 pv*H — 1 @1 pMt

. Psnow(0; 0) 1 (1 p p ,
and therefore depends on the relationship between the expected proportion
of vertices sampled initially and the maximum degreeM . In the case wherep
is xed, as M increases, the condition number is upper bounded b)%. On the
other hand, if Mp = o(1), using the approximation (1 pM** 1 (M +1)p,
we nd that the condition number behaves as M + 1).

These observations suggest that, for instance, under low sampling rates
the inverse problem is increasingly ill-posed for estimating degree distribu-
tions of heavier tails. Also, the bounds on the condition numbers suggest
that, in contrast to estimation of the mean from a sample from a nite
population, where the accuracy depends on the sample size rather than
the fraction of the population that is sampled, for estimation of complex
properties of networks the accuracy depends strongly on the fraction of the
population that is sampled.

2.2.2. Induced and incident subgraph sampling. These two sampling de-
signs are both non-adaptive and analogous in spirit, di ering only in the
order of selection of vertices and edges. In induced subgraph sampling, a
set of vertices is selected as independent Bernoulpj trials (other varia-
tions are possible { see below). Then, all edges between selected vertices
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are observed, i.e., we observe the subgraph induced by this vertex subset.
This sampling scheme has been used in the analysis of technological and
biological networks (Stumpf and Wiuf, 2005). Conversely, under incident
subgraph sampling we seleciedgesas independent Bernoullip) trials and
we then observe all vertices incident to at least one selected edge.

The P matrix for induced subgraph sampling is

(J;p“l(l pd i foro i | M

2.7 Pina(i;j ) =
@7 Puai]) oo i<i W

while that for incident subgraph sampling is

(jipi(l pi i forl i j M

2.8 Pinc(izj) =
(2:8) ne(11) 0 for0 j<i M :
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Fig 2 . Singular values decay under Induced Subgraph samplingM = 20.

the expected behavior of this estimator. As can be seen from the illustration
in Figure 3, the right singular vectors behave like a Fourier basis, in that
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Fig 4. The rst 12 left singular vectors under Induced Subgraph sampling, ordered by
singular values from big to small: maximum degreeM = 20, sampling rate p = 20%.
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For one-wave snowball sampling, the representation (2.10) still applies.
However, the indicator functions are not independent. Straightforward ar-
guments yield that the covariance and variance ofN, for k = 0;1;::;M
are

X ke |
Cov(Ny;Ny) = Nyt p*' et
t
X
(2.11) + N p<' ¥ NeN@@ p<re;
t

and

+  Nuke@ P '+ Noaa(l p)*< @2
t t

h i
(2.12) +N2L P2 N 1 21 pkt o

where Nokit (N1kit) is determined by the underlying network G, de ned as
the number of ordered pairs of nonadjacent (adjacent) distinct vertices of
degreesk and I, respectively, which have t common adjacent vertices.
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Now consider the marginal distributions of the N, under snowball sam-
pling and induced subgraph sampling. Note that the rst term in (2.12) and
(2.14) is the k-th entry of the expectation PN . This observation suggests
that, if the remaining terms in the variance (as well as the o -diagonal terms
corresponding to covariances) are su ciently small, a Poisson model might
again be acceptable.

More precisely, if the sampling ratep is small, then each of the indicators
in (2.10) and (2.13) likely has only very small probability of being equal
to one. On the other hand, if the graph is large (i.e.,ny is large) and k
is not too far out in the tail of the distribution (i.e., k is not too close to
M), then there should be many such indicators. So a Poisson approximation
would make sense here. Given, however, that these indicator variables are
dependent, the necessary argument is somewhat more involved. We present
a formal justi cation, using the Chen-Stein method, in Appendix B.

Simulation can be used to assess this approximation. Some representative
results, shown in Figure 5, con rm the reasonableness of a Poisson approx-
imation for the marginal distribution of the N,, under induced subgraph
sampling, for k within a reasonable distance from the mean.

Degree = 2

Sample

0 2 4 6 8 10 12
Sample

I T S N R |

vvvvvvv

Poisson

Sample
0
!

Fig 5. QQ plot: distribution of N; compared to Poisson distribution with mean (PN);.
The underlying network is ER with n, = jVj = 1000 and ne = jEj = 50000. Sampling rate
p =5%. The average degree of sample is equal t&.

In summary, for all of the sampling plans considered in this paper, an

approximate Poisson marginal distribution is arguably reasonable for the
observed countsN, . Thus, a Poisson regression model is suggested for solv-
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that is, fg fy if k and | are close. Examples of networks with smooth
degree distributions include Erdes-Renyi (ER), mixture of ER, power-law
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We de ne a weighted mean square error (WMSE) in the observation space
as

h i

(3.3) WMSE((N;N)= E (PN PR)'C ¥PN PN)

Under the conditions that f (N ) is weakly di erentiable and that E jf (N )j
is bounded (which we verify following the arguments in Appendix C), a gen-
eralized SURE estimate for the WMSE can be obtained as

WHRISE (R;N) = ( F(’N)TC PN +ISPIQ)TC PR

+2 Trace Pg
(3.4) 2(PRN)TC N

The rst term in (3.4) involves the unknown N. However, we may drop
this term because it does not involve . The last three terms have N in
them, which is a function of
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3.3. Approximation of the covariance matrix C. For the ego-centric sam-
pling design, recall that the N, are independent random variables, dis-
tributed according to a binomial with parameters p and N¢. As a result,
the covariance matrix C is simply p(1 p) diag(N). In contrast, for the
one-wave snowball sampling and the induced subgraph sampling (as well as
the related incident subgraph and random walk sampling),C will have non-
zero o -diagonal elements. Recall, however, that these o -diagonal elements
involved higher-order properties of the graph, in the sense of summarizing
even more structure than the degree distribution we seek to estimate. Ac-
cordingly, it is unrealistic to think to incorporate this information into our
estimation strategy. We instead focus on the diagonal elements of.

We approximate the covariance matrix C with a diagonal matrix of the
form

(3.6) €= diag(N smooth) +
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4.1. Design. There are several parameters that need to be chosen with
some care. Here we list them and discuss the conventions we applied.

b: The random vector b must have zero mean, covariance matrix ,
and bounded higher order moments; here we use a multivariate normal,
ie.b  N(O;l).

In principle, the value should be small enough to approximate
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of networks are studied: those from the Erdes-Renyi model and those from
a block model with two blocks. These are two basic models commonly used
in network studies (e.g., Kolaczyk 2009, Ch 6). In the Erdes-Renyi model,
edges are randomly assigned to each pair of vertices with a given probability,
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sampling (Figure 9), the block model has a broader range of degrees than the
Erdes-Renyi model at any given choice of our other simulation parameters.
In (2.13), for each k, the indicator function involving u 2 V with higher d
has lower probability of being equal to 1. Thus a better Poisson approxima-
tion of N, and a more accurate approximation ofC occur under the block
model. A power-law network has an even broader degree distribution. For
the same reasons, therefore, we expect the estimators for the power-law like
networks in the applications of Section 5 to perform similarly well. However,
the results for Erdes-Renyi and the block model are quite close in Figure 7
and Figure 8. This is because only the vertex with degree in the true
network can possibly contribute to degreek under ego-centric and one-wave
snowball sampling.

Three sampling rates are studied: 10%, 20%, and 30%. Our results show
that there is less accuracy for smaller sampling rate, as is to be expected.
In the literature on Internet community monitoring, 30% sampling rates
have been suggested as reasonable for preserving network properties to a
reasonable accuracy (Leskovec and Faloutsos, 2006). In our results, we see
that our estimators of degree distribution perform fairly well based on as
low as a 10% sampling rate.

Fig 7 . Simulation results for ego-centric sampling. Error measured by K-S D-Statistic. For
each sampling rate, the three boxes from left to right represent K-S D-Statistic comparing
the true degree distribution with (left) sample degree distribution, (middle) estimated degree
distribution using the non-parametric method, and (right) estimated degree distribution
using the proposed method. (Online versions of gure are in color.)
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Sl g

Fig 8. Simulation results for one-wave snowball sampling. Error measured by K-S D-
Statistic. For each sampling rate, the three boxes from left to right represent K-S D-Statistic
comparing the true degree distribution with (left) sample degree distribution, (middle) es-
timated degree distribution using the non-parametric method, and (right) estimated degree
distribution using the proposed method. (Online versions of gure are in color.)

5. Applications. The cost of any sampling strategy varies with the
structure of the network and the protocol. As we have remarked, sampling
is of particular interest in the context of online social networks. In online
social networks where each user is assigned an unique user id, it is a com-
mon practice to select a set of users by querying a set of randomly generated
user id's (Ribeiro and Towsley, 2010). Thus our induced subgraph sampling
can be applied there. In this section, we use our degree distribution estima-
tion method on data from three online social networks: Friendster, Orkut,
and LiveJournal. These data are available on the SNAP (Stanford Network
Analysis Project) website. In the following we present our estimates of var-
ious degree distributions from these online social networks. In addition, we
show how these degree distributions help us to gain insight about the epi-
demic thresholds of these networks, which is relevant to the concept of social
in uence, spread of rumors and viral marketing.

5.1. Estimateing degree distributions from online social networks. It is
now well-understood that large-scale, real-world networks frequently have
heavy-tailed degree distributions. Stumpf and Wiuf (2005) proved analyt-
ically that for a network with an exact power-law degree distribution, al-
though its sampled network under our sampling method (induced Subgraph
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ing, life/style, life/support, sports, student life and technology" (Yang and
Leskovec, 2012). It is the degree distributions for subnetworks corresponding
to collections of ground-truth communities such as these that we estimate
here.

Figure 10 gives an example of the estimators. The rst row is for three
sub-networks from Friendster. Communities are ordered according to the
number of users in them. In the top-left subplot, vertices from the top 5
communities form an induced sub-network for which the degree distribution
is to be estimated. Then Bernoulli sampling of vertices with 30% sampling
rate is performed on this sub-network, and our estimation method is applied.
Similarly, the true network in the top-middle plot is induced by top 6-15
communities, and in the top-right plot the true network is induced by the
top 16-30 communities. The second row and the third row show estimates
of Orkut and LiveJournal respectively. Examination of these plots shows
that, while the sampled degree distribution can be quite o from the truth,
particularly in the case of the Friendster and Orkut networks, correction
for sampling using our proposed methodology results in estimates that are
nearly indistinguishable by eye from the true degree distributions.

Fig 10 . Estimating degree distributions of communities from Friendster, Orkut and Live-
journal. Squares represent the true degree distributions, dots represent the sample degree
distributions, triangles represent the estimated degree distributions. Sampling rate=30%.
Points which correspond to a density < 10 * are eliminated from the plot. (Online versions
of gure are in color.)

In Table 1, the median and inter-quartile range are computed based on the
application of our estimator to 20 samples. The estimated degree distribution
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greatly improves over the degree distribution of the sample, as measured
by K-S D-statistic. In fact, the improvement in accuracy is by an order of
magnitude, with the values of the D-statistic produced by our estimator

being on the same order of magnitude as the best results in our simulation
study.
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degree,M» be the second raw moment of the degree distributionne = JE]
be the number of total edges, andJ = (2 ne(ny  1)=n,)*2. Then we have
the following relationship,

[
(51) M1 M2 1 U :

The proof of the rst two inequalities can be found in Van Mieghem (2011),
and the third (upper bound) can be found in Lowasz (1993). Thus we have
the bounds for the epidemic threshold ,
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Fig 12 . Bounds for the epidemic spreads of Orkut networks, each box is estimated based
1

on 20 samples, four horizontal lines are the true values for gt-, P=—, = and § from
2

top to bottom. For each bound, the two boxes from left to right correspond to the estimated
value using (left) the proposed method and (right) the sample degree distribution. (Online
versions of gure are in color.)

Fig 13. Bounds for the epidemic spreads of LiveJournal networks, each box is estimated
based on 20 samples, four horizontal lines are the true values forﬁ, 1
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radius) of the network can be successfully bounded by functions of our es-
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The equation at the (k  1)th row is

32
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Finally,
!
k 1

(A.11) xkn=( D"

Therefore, the entries in the kth eigenvector are

(

pkikI o for1 j ok
(12) mqy= (Pt

(
0 fork < M+1
The theorem is true for k by k matrix P.

APPENDIX B: POISSON APPROXIMATION

Here we give a proof of the Poisson approximation of the cumulative de-
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Proof of Theorem B.1 We sketch the proof brie y here. Without loss

where the elements are independent Bernoulli random variables with param-
eter p. SoX represents the selection of vertices for inclusion ifg in the case
of induced subgraph sampling and the initial selection of vertices in the case
of snowball sampling. Now letl,.x be an indicator random variable, which
isoneifv2 Sandd, k. Then the variables I, are so-called “increas-
ing functions' of realizations of X . So Corollary 2.E.1, page 28, ofPoisson
Approximation, by Barbour and colleagues, yields our result.

In more detail, there are two key observations to be made. First, we need
the Ik to be increasing functions. This induces positive correlation among
these indicator variables and it makes a general Chen-Stein bound become
much cleaner, as in our theorem, in that it can be expressed explicitly in
terms of means and variances. Partial ordering means that if we lek and
y be two possible realizations ofX, then x vy if and only if x; y; for all
i. And a function f is increasing iff (x) f(y) wheneverx y. For x to
be less than or equal toy, it su ces to think of what happens simply when
a new vertex enters the sampleS. One element ofx will change from a zero
to a one, sox y.What happens tol,.x ? If v is a vertex that was already
in S, under x, then adding a vertex to the sample undery can either not
change or increase its degree. Sh,.k(x)  lyk(y). On the other hand, if
v itself was the new vertex to enterS under y, the same statement can be
made.

Second is the observation that elements ofX are independent in our
setting, which is guaranteed by our assumption of Bernoulli sampling. Taken






Y. ZHANG, E.D. KOLACZYK, AND B.D. SPENCER/ 36

Ahmed, N. K. , Neville, J. and Kompella, R. R.  (2012). Network Sampling Designs
for Relational Classi cation. In  ICWSM.

Ahmed, N. K. , Berchmans, F. , Neville, J. and Kompella, R. (2010). Time-based
sampling of social network activity graphs. In Proceedings of the Eighth Workshop on
Mining and Learning with Graphs 1{9. ACM.

Ahn, Y.-Y. ,Han, S., Kwak, H. , Moon, S. and Jeong, H. (2007). Analysis of topological
characteristics of huge online social networking services. In Proceedings of the 16th
international conference on World Wide Web 835{844. ACM.

Bailey, N. T. et al. (1975). The mathematical theory of infectious diseases and its ap-
plications. Charles Grin & Company Ltd, 5a Crendon Street, High Wycombe, Bucks
HP13 6LE.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university
press.

Cochran, W. (1977). G.(1977); Sampling techniques. New York, Wiley and Sons 98
259{261.

CVX Research, I.  (2012). CVX: Matlab Software for Disciplined Convex Programming,
version 2.0 beta. http://cvxr.com/cvx

Daley, D. and Gani, J. (1999). Epidemic modelling: An introduction.

Dong, J. and Simonoff, J. S.


http://cvxr.com/cvx

Y. ZHANG, E.D. KOLACZYK, AND B.D. SPENCER/ 37

Computer Society Symposium on 343{359. IEEE.

Kolaczyk, E. D.  (2009). Statistical analysis of network data. Springer.

Kurant, M. , Markopoulou, A. and Thiran, P. (2011). Towards unbiased BFS sam-
pling. Selected Areas in Communications, IEEE Journal on 29 1799{1809.

Kurant, M. , Gjoka, M. , Butts, C. T. and Markopoulou, A. (2011). Walking on
a graph with a magnifying glass: stratied sampling via weighted random walks. In
Proceedings of the ACM SIGMETRICS joint international conference on Measurement
and modeling of computer systems



Y. ZHANG, E.D. KOLACZYK, AND B.D. SPENCER/ 38

Salehi, M. , Rabiee, H. R. , Nabavi, N. and Pooya, S. (2011). Characterizing Twitter
with Respondent-Driven Sampling. In Dependable, Autonomic and Secure Computing
(DASC), 2011 IEEE Ninth International Conference on 1211{1217. IEEE.

Shi, X., Bonner, M. , Adamic, L. A. and Gilbert, A. C. (2008). The very small world
of the well-connected. In Proceedings of the nineteenth ACM conference on Hypertext
and hypermedia 61{70. ACM.

Stumpf, M. P. and Wiuf, C. (2005). Sampling properties of random graphs: the degree
distribution. Physical Review E 72 036118.

Stumpf, M. P. , Wiuf, C. and May, R. M. (2005). Subnets of scale-free networks are
not scale-free: sampling properties of networks. Proceedings of the National Academy of
Sciences of the United States of Americal02 4221{4224.

Van Mieghem, P. (2011). Graph spectra for complex networks Cambridge University
Press.

Van Mieghem, P. , Omic, J. and Kooij, R. (2009). Virus spread in networks. Networking,
IEEE/ACM Transactions on 17 1{14.

Wang, T. , Chen, Y., Zhang, Z. , Xu, T. , Jin, L. , Hui, P. , Deng, B. and Li, X. (2011).
Understanding graph sampling algorithms for social network analysis. In Distributed
Computing Systems Workshops (ICDCSW), 2011 31st International Conference on
123{128. IEEE.

Yang, J. and Leskovec, J. (2012). De ning and evaluating network communities based
on ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Se-
mantics


mailto:yaonanzh@bu.edu
mailto:kolaczyk@bu.edu
mailto:bspencer@northwestern.edu

