
Gonzalo Mateos, Santiago Segarra,  
Antonio G. Marques, and Alejandro Ribeiro

Connecting  
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Identifying network structure  
via graph signal processing

N
etwork topology inference is a significant problem in net-
work science. Most graph signal processing (GSP) efforts 
to date assume that the underlying network is known 
and then analyze how the graph’s algebraic and spectral 

characteristics impact the properties of the graph signals of 
interest. Such an assumption is often untenable beyond applica-
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perspective will constitute a crucial step to obtaining new in-
sights in various areas of science and engineering; SP can play 
a key role in these ventures.

Under the assumption that the signals are related to 
the topology of the graph where they are supported, the 
goal of GSP is to develop algorithms that fruitfully leverage 
this relational structure and can make inferences about these 
relationships even when they are only partially observed. 
Most GSP efforts to date assume that the underlying net-
work topology is known and then analyze how the graph’s 
algebraic and spectral characteristics impact the properties 
of the graph signals of interest. This is feasible in applica-
tions involving physical networks or, when the relevant links 
are tangible and can be directly observed 
(e.g., when studying flows in transportation 
networks, monitoring cascading failures 
in power grids, maximizing influence on 
social networks, and tracking the dynamic 
structure of the World Wide Web). Howev-
er, in many other settings, the network may 
represent a conceptual model of pairwise 
relationships among entities. In exploratory 
studies of, e.g., functional brain connectiv-
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the performance and computational complexity of the ensu-
ing algorithms. All of the elements are now in place to state 
a general network topology identification problem; see “Why 
Graft Shift?”

Problem
Given a set : { }xX p p

P
1= =  of graph signal observations sup-

ported on the unknown graph ( , , )WG V E  with ,NV =  the 
goal is to identify the topology encoded in the entries of a graph-
shift operator S that is optimal in some sense. The optimality 
criterion is usually dictated by the adopted network-dependent 
model for the signals in ,X  possibly augmented by priors moti-
vated by physical characteristics of ,S  to effect statistical regu-
larization, or else to favor more interpretable graphs.

This is admittedly a very general and somewhat loose for-
mulation that will be narrowed down in subsequent sections 
as we elaborate on various criteria stemming from different 
models binding the (statistical) signal properties to the graph 
topology. Indeed, it is clear that one must assume some rela-
tion between the signals and the unknown underlying graph, 
since otherwise, the topology inference exercise would be 
hopeless. This relation will be henceforth given by statisti-
cal generative priors in the “Statistical Methods for Network 
Topology Inference” section and by properties of the signals 
with respect to the underlying graph such as smoothness (the 
“Learning Graphs From Observations of Smooth Signals” 
section) or stationarity (the “Identifying the Structure of Net-
work Diffusion Processes” section). The observations in X  
can be noisy and incomplete, and accordingly the relationship 
between N, P, and the mechanisms of data errors and missing-
ness will all play a role in the graph recovery performance. 
Mostly, the focus will be on inference of undirected and static 
graphs, an active field for which the algorithms and accompa-
nying theory are today better developed. The “Emerging Topic 
Areas” section will broaden the scope to more challenging 
directed, dynamic, and multigraphs.

icw20(h)-2(-11(c1(e)-14(d a4i)17(t)-19(y ()54(t)-20(h)-2()]T O)1(S()5P19(t)-11(9 )1(g)-2f)23a
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The iGFT formula xx Vx vk
N

k k1R= = =u u  allows one to syn-
thesize x  as a sum of orthogonal frequency components .vk  
The contribution of vk
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transform (KLT) [also known as the principal component 
analysis (PCA) transform in statistics and data analysis]; see 
“Encompassing Nature of the GFT.” The GFT offers a unifying 
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an example of a random graph signal that is stationary with 
respect to any graph shift .S  A second, albeit related, observa-
tion is that, by definition, any random vector x  is station-
ary with respect to the shift given by the covariance matrix 

.S xR=  The same is true for the precision matrix .S 1
xR= -  

These facts will be leveraged in the “Identifying the Structure 
of Network Diffusion Processes” section to draw connec-
tions between stationary graph signal-based topology infer-
ence approaches and some of the classical statistical methods 
reviewed in the “Statistical Methods for Network Topology 
Inference” section. Third, notice that the stationarity require-
ment is tantamount to the covariance of the process being 
a polynomial in the graph-shift operator. Accordingly, under 
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where R
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Variants of the model penalize only the off-diagonal entries 
of ,H  or incorporate edge-specific penalty parameters 0ij 2m  
to account for structural priors on the graph topology. Estima-
tors of graphs with nonnegative edge weights are of particular 
interest; see “Learning Gaussian Graphical Models With La-
placian Constraints.”

Although (14) is convex, the objective is nonsmooth 
and has an unbounded constraint set. As shown in [2], the 
resulting complexity for off-the-shelf interior point methods 
adopted in [64] is ( ) .O N6  Additionally, interior point meth-
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Learning graphs from 
observations of smooth signals
In various GSP applications, it is de-
sirable to construct a graph on which 
network data admit certain regularity. 
Accordingly, in this section, we survey 
a family of topology identification ap-
proaches that deal with the follow-
ing general problem. Given a set 

: { }xX p p
P

1= =  o f  p oss ib ly  no i sy 
graph signal  observations, the goal 
is to learn a graph ( , , )WG V E  with 

NV =  nodes such that the observa-
tions in X  are smooth on .G  Recall that 
a graph signal is said to be smooth if the 
values associated with vertices inci-
dent to edges with large weights in the 
graph tend to be similar. As discussed 
in the “Graph Fourier Transform and 
Signal Smoothness” section, the so-de-
fined smoothness of a signal can be 
quantified by means of a TV measure 
given by the Laplacian quadratic form 
in (1). Such a measure offers a natural 
criterion to search for the best topology 
(encoded in the entries of the Laplacian), 
which endows the signals in X  with 
the desired smoothness property.

There are several reasons that motivate this graph-learning 
paradigm. First, smooth signals admit low-pass, band-limited 
(i.e., sparse) representations using the GFT basis [cf. the discus-
sion following (1)]. From this vantage point, the graph-learning 
problem can be equivalently viewed as one of finding efficient 
information-processing transforms for graph signals. Sec-
ond, smoothness is a cornerstone property at the heart of 
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the other hand, small eigenvalues associated with low frequen-
cies are translated to high-power factor loadings—a manifesta-
tion of the model imposing a smoothness prior on .x

Given the observed signal ,x  the maximum a posteriori 
(MAP) estimator of the latent variables is given by ( 2v  is sub-
sequently assumed known and absorbed into the param-
eter )02a

 ,arg min x V T2
MAP| | | |a K= - +

|
$ .  (19)

which is, of course, parameterized by the unknown eigenvec-
tors and eigenvalues of the Laplacian. With :y V|=  denoting 
the predicted graph signal (or error-free representation of ),x  it 
follows that [cf. (1)]

 ( ).TVy V V y y Ly yT T T T| |K K= = =  (20)

Consequently, one can interpret the MAP estimator 
(19) as a Laplacian-based TV denoiser of ,x  which effec-
tively imposes a smoothness prior on the recovered signal 

.y V|=  One can also view (19) as a kernel ridge-regression 
estimator with (unknown) Laplacian kernel :K L= @  [29, 
Sec. 8.4.1].

Building on (19) and making the graph topology an explicit 
variable in the optimization, the idea is to jointly search for the 
graph Laplacian L  and a denoised representation y V|=  of 

,x  thus solving

 .min x y y Ly
,
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in the “Graph Filters as Models of Network Diffusion” section. 
As we will see, this is a more general model where we require 
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Diffused nonstationary graph signals
We now deal with more general nonstationary signals x  that 
adhere to linear diffusion dynamics ,hx S w Hwl

L
l

l
0
1R= ==

-  
but where the input covariance wwE T

wR = 6 @ can be ar-
bitrary. In other words, we relax the assumption of w  being 
white, which led to the stationary signal model dealt with so 
far [cf. Definition 2 and (30)]. Such a model is, e.g., relevant to 
(geographically) correlated sensor network data or to models 
of opinion dynamics, where (even before engaging in discus-
sion) the network agents can be partitioned into communities 
according to their standing on the subject matter.

For generic (nonidentity) ,wR  we face the challenge that the 
signal covariance [cf. (6)]

 H HT
x wRR =  (35)

is no longer simultaneously diagonalizable with .S  This rules 
out using the eigenvectors of the sample covariance xRt  as ei-
genbasis of ,S  as proposed in Step 1 for the stationary case. 
Still, observe that the eigenvectors of the shift coincide with 
those of the graph filter H  that governs the underlying diffu-
sion dynamics. This motivates adapting Step 1 in the “Step 1: 
Inferring the Eigenvectors” section when given observations 
of nonstationary graph processes. Simply put, the approach in 
[56] is to use snapshot observations X  together with additional 
(statistical) information on the excitation input w  to identify 
the filter ,H  with the ultimate goal of estimating its eigenvec-
tors .V  These estimated eigenvectors Vt  are then used as inputs 
to the shift identification problem (32), exactly as in the robust 
version of Step 2 in the “Step 2: Inferring the Eigenvalues” sec-
tion. Accordingly, the focus is placed on the graph filter (i.e., 
system) identification task; see Figure 2(b).

Identification of the graph filter H  from nonstationary sig-
nal observations is studied in detail in [56], for various sce-
narios that differ on what is known about the input process 

.w  Of particular interest is the setting where realizations of 
the excitation input are challenging to acquire, but informa-
tion about the statistical description of w  is still available. 
Concretely, consider M different excitation processes that are 
zero mean and their covariance w wE,m m m

T
wR = 6 @ is known 

for all , , .m M1 f=  Further suppose that for each input 
process wm  we have access to a set of independent realiza-
tions xX ( )

m
p

p
P

1
m

= =m
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with (37). For ,M 12  the set of feasible solutions to the system of 
(36) is naturally given by .H H:M m

M
1 1

sym sym=
= m(

If only empirical covariances { },m m
M

1xR =
t  are available, (39) 

can be leveraged to define the matrices :A V,
/

,m m m
1 2

w wxw 9R= -t th



33IEEE SIgnal ProcESSIng MagazInE   |   May 2019   |





35IEEE SIgnal ProcESSIng MagazInE   |   May 2019   |

signal in the graph spectral domain [6]. For image restoration 
tasks such as denoising and deblurring, a major challenge is 
how to design appropriate signal priors to regularize other-
wise ill-posed inverse problems. Learning graph Laplacians 
that endow the signal representations with desired sparsity or 
smoothness properties is thus well motivated and an active 
area of research.

Increasingly, applications call for learning graph represen-
tations of dynamic, multiaspect data, possibly accounting for 
nonlinear and directional (causal) effects among nodal signals. 
While a thorough treatment is beyond the scope of this article, 
for completeness, we offer a brief account in the next section. 
For a comprehensive survey of these emerging topics, the read-
er is referred to [15].

Emerging topic areas
Thus far, the focus has been on learning static and undirected 
graphs from data. In this section, we first consider the identifi-
cation of digraphs given nodal time series, which is intimately 
related to the problem of causal inference. We then cross the 
boundary of linear time-invariant network models and outline 
recent advances for tracking topologies of dynamic graphs as 
well as mechanisms to account for nonlinear pairwise interac-
tions among vertex processes.

Digraphs and causality
Undirected graphs, like correlation networks, can inform prox-
imity between nodal signals but cannot inform causality. Here 
we will lift the assumption that graph-shift operators are sym-
metric and consider estimation of digraphs with the intent of 
inferring causality from snapshot observations.

To that end, structural equation modeling encapsulates a 
family of statistical methods that model causal relationships 
between interacting variables in a complex system. This is 
pursued by estimating linear relationships among endogenous 
as well as exogenous traits, and symmetric structural equation 
models (SEMs) have been extensively adopted in economics, 
psychometrics, social sciences, and genetics, among others; 
see, e.g., [27]. The appeal of SEMs can be attributed to sim-
plicity and the inherent ability to capture edge directionality 
in graphs, represented through a (generally) asymmetric adja-
cency matrix 
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central to popular digraph topology identification approaches 
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also touches upon prediction of (nonlinear and dynamic) pro-
cesses supported on graphs.

Applications
This section presents numerical tests conducted on real data 
to demonstrate the effectiveness of selected graph-learning 
methods, ranging from ad hoc thresholding-based network 
constructions all the way to algorithms for identification of di, 
time-varying graphs. Through test cases, we show impact to 
diverse application domains including the economy, computa-
tional biology, neuroscience, and online social media.

Efficient representation of signals supported on a network 
of U.S. economic sectors
The Bureau of Economic Analysis of the U.S. Department 
of Commerce publishes a yearly table of inputs and outputs 
organized by economic sectors. More precisely, we have a 
set of 62 industrial sectors as defined by the North Ameri-
can Industry Classification System and a similarity function 

: ,W RVV "# +  where Wij  represents how much of the pro-
duction of sector ,i  expressed in trillions of U.S. dollars per 
year, was used as an input of sector j  on average from 2008 
to 2010. Moreover, for each sector we are given two economic 
markers: the added value (AV) generated and the level of pro-
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agnostic to the form of the filter [53]. This naturally leads back 
to formulation (31), with V  given by the eigenvectors of T  and 

( )f S  chosen as an edge sparsity-promoting criterion. Different 
from the problem dealt with in the “Identifying the Structure 
of Network Diffusion Processes” section, note that matrix T  is 
not necessarily a covariance matrix.

Consider identifying the structural properties of proteins 
from a mutual information graph of the covariation between 
the constitutional amino acids [13], [53]. Pictorially, for a par-
ticular protein we want to recover the structural graph in the 
top left of Figure 4(a) when given the graph of mutual infor-
mation in the top right corner. The graph recovered by net-
work deconvolution [13] is illustrated in the bottom left corner 
of Figure 4(a), whereas the one recovered using the approach 
in (31) (with the sparsity-promoting ( ) )f S S 1< <=  is depicted 
in the bottom right corner. The comparison of the recovered 
graphs demonstrates that using a general filter model translates 
to a sparser graph that captures more accurately the desired 
structure. To quantify this latter assertion, Figure 4(b) depicts 
the fraction of the real contact edges recovered for each meth-
od as a function of the number of edges considered. For exam-
ple, if for a given method the 100 edges with largest weight in 
the recovered graph contain 40% of the edges in the ground-
truth graph, we say that the 100 top edge predictions achieve 
a fraction of recovered edges equal to 0.4. From Figure 4(b) it 
follows that the method in the “Learning Graphs From Obser-
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values u( )
i
c  were uniformly sampled over the interval [ , . ];0 0 01  

see [1].
The algorithm in [1] was run on the data set, and Figure 6(a) 

and (b) shows visualizations of the inferred network at t 10=  
and t 04=  weeks. Speculation about the possible successor of 
the dying North Korean ruler, Kim Jong-il, rose until his death 
on 17 December 2011 (week 38). He was succeeded by Kim 
Jong-un on 30 December 2011 (week 40). The visualizations 
show an increasing number of edges over the 45 weeks, illus-
trating the growing interest of international news websites and 
blogs in the new ruler, about whom little was known in the first 
10 weeks. Unfortunately, the observation horizon does not go 
beyond T 45=  weeks. A longer span of data would have been 
useful to investigate the rate at which global news coverage on 
the topic eventually subsided. Figure 6(c) depicts the time evo-
lution of the total number of edges in the inferred dynamic net-
work. Of particular interest are the weeks during which 1) Kim 
Jong-un was appointed as the vice chair of the North Korean 
military commission; 2) Kim Jong-il died; and 3) Kim Jong-un 
became the ruler of North Korea. These events were the topics 
of many online news articles and political blogs, an observation 
that is reinforced by the experimental results shown in the plot.

Concluding remarks and research outlook
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nonlinear interactions for network data such as those given 
by median or other nonlinear graph filters.

In terms of computational complexity, there is room for 
improving scalability of some of the algorithms described via 
parallelization and decentralized implementations. Moreover, 
adaptive algorithms that can track the (possibly) time-varying 
structure of the network and achieve both memory and compu-
tational savings by processing the signals on the fly are natu-
rally desirable, but so far largely unexplored.

Finally, one can explore the links between network decon-
volution—as described in the “Identifying Protein Structure 
via Network Deconvolution” section—and graph sparsifica-
tion approaches. The latter consists on approximating a given 




