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Attenuation measurements can be derived from the decay of backscattered signal with depth in 
an inhomogeneous material. In cases such as liver tissue, where many small inhomogeneities 
are likely to be included in sample volumes defined by pulse and beam widths, Rayleigh 
statistics describe the random nature of the magnitude of backscattered pressure. The statistics 
of speckle underlie the uncertainties in estimates of attenuation at discrete frequencies, and of 
the magnitude and frequency dependence of attenuation over a bandwidth. This paper derives 
expressions for the standard deviations of attenuation magnitude and frequency dependence in 
terms of parameters such as the dimensions of the region of interest, and the bandwidth of the 
ultrasonic system. Practical examples are given using published data, and comparisons to other 
techniques which measure "attenuation slope" are made. The analysis yields insights into 
trade-offs among variables such as the dimensions and shape of regions of interest, and the 
segmenting of data in time and frequency domain. 

PACS numbers: 43.80.Cs, 43.80. Ev 

INTRODUCTION 

Ultrasonic attenuation measurements of tissue samples 
have demonstrated the potential for discriminating normal 
from diseased tissues. Changes in the attenuation coeffi- 
cients as a function of time have been documented for a var- 

iety of tissues in pathological states. Some examples are dog 
myocardial tissue following infarction 1 and rat liver tissue 
during the evolution of carbon tetrachloride damage. 2 The 
measurement of attenuation in vivo using clinical B-scan in- 
strumentation has received much attention, 3-8 but the diffi- 
culties in this case are generally greater than for laboratory 
measurements on excised samples. For example, phase-in- 
sensitive transmission measurements can be made on isolat- 

ed samples, but clinical measurements of attenuation must 
rely on backscattered signals which pass through overlying 
tissue. 

Nonetheless, many time domain and frequency domain 
strategies exist for attenuation measurements derived from 
backscattered echoes, 8 and various sources of error compli- 
cate the estimation process. 3'9'1ø This paper considers only 
one measurement technique and one source of "error." Spe- 
cifically, we consider the measurement of the absolute (or 
true) magnitude of attenuation at independent, discrete fre- 
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pbs(r) A f• =• e r'y(r')dv', (1) 
/. , 

where A is a complex factor dependent on frequency, medi- 
um density, and amplitude of the incident wave; v' represents 
the sample volume of integration; and n is a unit vector 
pointing in the direction of the incident sound propagation. 

A simple argument shows that the magnitude of back- 
scattered pressure, LPb, l, is Rayleigh distributed. Within the 
sample volume v', let the inhomogeneities be K uncorrelated 
point discontinuities in acoustic impedance. Then, 

K 

r(r') = • Z,,•(r' - r, ), ( • ) 
A = 
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noise-to-signal log expansion, enabling continued use of 
analysis based on normally distributed variables. Further- 
more, the last 
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FIG. 3. Isovolumetric regions of interest segmented into independent scan 
lines (Ay = one-half beamwidth), and depth segments (floe = axial length 
chosen by proper windowing of digitized rf echo). In (a), greater depth 
information is available, whereas in Fig. 5 (b), increased lateral averaging is 
available. The uncertainty in estimation of attenuation at any frequency is 
lower by 60% in case 5 (a) compared to 5(b) because a least-squares error 
estimation strongly favors the added depth information. 

consider the early results of liver attenuation obtained from 
the Rochester system, 3'4 where an approximate 4-X 5-cm 
region of tissue was analyzed. In this case, time domain 
Blackman windows were spaced with a distance of 
AX = 0.375 cm; there were M = 14 independent depths and 
N = 12 independent scan lines per region of interest. Thus 
from Eq. (23) the s.d. of the measurements was 

(0.44) 
•r• = = 0.014 Np/cm. (39) 

(0.375) (12) •/2(13) 5/4 
Using a typical value of a = 0.15 Np/cm for 3 MHz, 4 the 
fractional error for these measurements expressed in percent 
is 

Ora/tS•3MHz • "[- 9%. (40) 

Thus, with this system operating in a frequency band of 2-3 
MHz, an approximately 4-X 5-cm region was required to 
obtain less than 10% fractional error on any single measure- 
ment of attenuation. 

In deriving the magnitude and frequency dependence of 
attenuation over a bandwidth, the standard deviations in ao 
and n were linked directly to the uncertainty in attenuation 
at any individual frequency •ra. Also, the standard deviation 

A 

in estimate of attenuation • near the center frequency is 
shown by Eq. (34) to be less than •ra by a factor of 1/x•-, 
where F is the number of discrete, independent frequencies 
at which attenuation estimates were obtained. The correct 

A 

interpretation is that • is merely the group average of F at- 
tenuation estimates over the bandwidth. If the bandwidth 

does not include 1 MHz, then the value of ao is a projection 
out of the range of data, and Eq. (33 ) is used. Again, refer- 
ring to the Rochester system, 3'4 attenuation estimates were 
obtained at F-- 15 discrete frequencies between 2 and 3 
MHz. Assuming a 10% average fractional error for individ- 
ual attenuation estimates, then using Eq. (34), 
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FIG. 4. A power law fit of attenuation versus frequency, using log variables. 
If attenuation estimates are available at discrete frequencies betweenf• and 
•, then estimates of the power law parameters are most likely to fall within 
the "bow tie" region shown between lines fa3 Tr 0 lws, 



Af_• 1/At = C/2AX. (48) 

Segmenting the available length L and bandwidth B, we have 
the relations: 

AX=L/M and Af=B/F. (49) 

Substituting these into the error expression of Eq. (47) 
to eliminate AX and F yields: 

0.44(C/2) 1/2 
0'• •- L 3/22¾1/2B I/2[(M-- 1)5/4/M 3/2] ' (50) 

In the above expression, the term in square brackets is insen- 
sitive to variations in M. Conveniently, the quantity 
(M-1)5/4/M 3/2 is very close to 0.44 over a range of 
3<M<30. This implies that the least-squares error estimate 
of attenuation depends strongly on the overall dimensions of 
the medium and the bandwidth employed, but is nearly inde- 
pendent of how the time (sample volume depth) and fre- 
quency domains are segmented. 

Substituting the constant 0.44 for the function of M in 
square brackets of Eq. (50) produces the desired result: 

( C /2 .) •/2. (51) 
To illustrate this result, let us calculate the error bounds 

A 

on • using data from a 1- X 1-cm region of tissue. Assume the 
use of a hypothetical 6.3-MHz bandwidth, 6.3-MHz center 
frequency, f/10, scanning instrument. (For comparison 
purposes, these are the same system parameters employed by 
Kuc in calculations of the variance in measurement of at- 
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