
Effects of heat conduction and sample size on ultrasonic 
absorption 
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for beamwidths and measurements times such that (4kt/ 
.•)<1. 

More generally, when the thermocouple is not centered 
in the focal region, the rate of heating method would give 

8Tm.• 2alo : e -r•/(4kt +•. (13) 
8t pc[ 1 + {4kt 

Equations {12} and {13} remove previous restrictions on the 
use of rate of heating absorption measurements. Beam- 
widths smaller than 3 mm in diameter can be used, and 

placement of the thermocouple at the center of the focal 
region is no longer required. The extension of pulse decay 
and rate of heating measurements to very thin samples re- 
quires additional considerations which are developed below. 

B. Axial heat flow 

In modeling heat flow to the water coupling medium, 
we assume that the effects of convection in the fluid, and 
thermal resistance at the absorber-water interface, are negli- 
gible. Furthermore, we assume that in soft biomaterials with 
large water content, the values of K and k are identical to 
water. Under these conditions, the problem of absorption 
and conduction in a layer of material can be handled in a 
straightforward manner by use of Green's functions. The 
derivation begins with the solution for an instantaneous 
point heat source of strength Q3 liberated at time t = 0 in a 
homogeneous medium, as measured in Q3 UeTi2.360000 0000 0d.200000 0.0 Td
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history. Hence, for finite sample thickness we obtain: 

TpD (r = O,Z,t ) = pc[ 1 + {4kt/tg )] 
Here, the erfl.) term can be interpreted as a separable correc- 
tion function which accounts for the finite sample thickness. 
Generalizing the results to the off-axis case {r%0), gives 

TeD ( r,Z,t ) = 2aloA t 
pc[ 1 + (4kt 

Xexp[ -- r2/{4kt +/g)] [erf{ZN4kt)]. (23) 
Expressions valid for use with rate of heating experi- 

ments may also be obtained directly from the pulse decay 
equations. As mentioned previously, the slope of tempera- 
ture rise is used to eliminate effects of viscous heating during 
cw insonation, so using the relations between step response 
and impulse response of a linear system one derives the rela- 
tion: 

o3 TR•i 2alo 

cgt pc[ 1 

X exp [ -- r2/(4kt + tg )] [ erflZ/x/4kt ) ], 
{24) 

which is written directly from Eq.(23) assuming the thermo- 
couple is positioned at depth Z within a sample of thickness 
2Z. For simplified experimental conditions where r = 0, and 
t is small enough to satisfy Eqs. {10) and {17), this rate of 
heating expression reduces to the simple case of no conduc- 
tion given by Eq. {1). 

II. RESULTS 

To demonstrate the effect of heat conduction to the cou- 

pling medium, rate of heating experiments were performed 
on samples of soft polyethylene plastic of varying thickness. 
The results are shown in Fig. 3. In these measurements, a 
0.9-MHz beam was used with a half-intensity focal beam- 
width of 4.3 mm. This focal region diameter is sufficiently 
large to prevent appreciable radial heat flow at 0.5 s follow- 
ing commencement of ultrasonic heating. • In the case of the 
1.8-mm sample, a thermocouple, located at the sample cen- 
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FIG. 3. Rate of heating curves obtained in soft polyethylene strips of differ- 
ent thicknesses, using 0.9-MHz ultrasound. Solid lines--measured tem- 
perature rise. Dashed lines--theoretical values for the slope of temperature 
at0.5 s. 

ter, records a slope at 0.5 s which is very close to the value of 
dT/dr obtained by using Eq. { 1) with known values 8 ofp,c, a, 
and I. Radial and axial heat conduction are not accounted 

for in Eq. {1), and are not significant effects at 0.5 s in this 
experimental configuration as demonstrated by the close 
match between calculated and measured slopes. 

In contrast, when the material thickness is reduced to 
0.55 mm, the center thermocouple records a temperature 
history which is clearly affected by heat conduction to the 
top and bottom surfaces. Attempts to obtain the tempera- 
ture slope before conduction effects become significant are 
thwarted by the presence of a "viscous heating" pheno- 
menon around the embedded thermocouple which is promi- 
nent in the first 0.3 s of insonation. •-• From the theory conductionbe4ithe aeore prTd
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attenuation. The scaled version is plotted along with the raw 
data from 0.75-mm depth in Fig. 4. From the theoretical 
result presented in Eq. {21}. the remaining difference 
between the 0.75-and 2.5-mm heating curves should be at- 
tributable to error function terms. Accordingly, the scaled 
2.5-mm data were multiplied by a compensating factor of 
[ 1 + erf[O.O75/x/4kt }/1 -+- erf[O.25/•/4kt}], with k = 1.6 
X 10 -3 cm:/s. This correction function should reduce the 
magnitude of the 2.5-mm curve, at each point in time, to 
precisely overlap the data from 0.75 mm. The result is shown 
as a dotted line in Fig. 4, and although the match of the 
compensated 2.5-mm data to the 0.75-mm data is not precise 
over the entire curve, the results are within the error imposed 
by the approximately 10% uncertainty in the location of 
each thermojunction, the values of a and k, and by the small 
mismatch between thermal properties of the absorbing ma- 
terial and water. 

An integral-differential relationship between rate of 
heating and pulse decay methods has been assumed in the 
theory. To demonstrate this experimentally, both pulse de- 
cay and rate of heating curves were obtained at 0.75-mm 
depth in a castable rubber absorber, using focused 1.25-MHz 
insonation. The result of the 0.1 s on time pulse decay experi- 
ment is shown in Fig. 5. The integral of the decay curve, 
when scaled by a factor of 1/At and plotted as a continuous 
function of time, should yield precisely the data obtained 
from a step input of ultrasound at the same intensity, accord- 
ing to the general relations which exist between the impulse 
response of a linear, time invariant system. Figure 6 shows 
the rate-of-heating data obtained at an intensity level 0.33 
times lower than in the pulse decay experiment. Also shown 
in Fig. 6 is the results of numerical integration of the pulse 
decay experiment of Fig. 5, scaled by a factor of {0.33}/{0.1} 
which accounts for the intensity change between experi- 
metns and the on time used in the pulse decay case. The 
overlap of these curves is good overall even though both 
curves include the effects of "viscous heating" which is local- 
ized around the thermojunction. The small deviation may be 
attributable to the use of a finite duration input of acoustic 
energy which is short but not truly impulsive in the pulse 
decay experiment. 

In summary, these experiments verify the impulse re- 
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FIG. 5. Pulse decay results using a 1.25-MHz focused beam and a thermo- 
couple located at 0.75 mm in an absorbing material. 
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FIG. 6. Comparison of rate of heating and the integral of the pulse decay 
experiment shown in Fig. 5. These data demonstrate the impulse response- 
step response relationship between pulse decay and rate of heating experi- 
ments. 

sponse-step response relationship between pulse decay and 
rate of heating approaches, and also validate the use of error 
functions to account for axial heat flow. 

III. DISCUSSION 

The practicability of any measurement technique de- 
pends in part on the number of parameters which must be 
known a priori, and the complexity of mathematics used in 
analysis. Therefore, it is useful to consider the degree of diffi- 
culty encountered in the approaches described herein. The 
simplest situation is the rate of heating measurement where 
heat conduction effects can be ignored. Here the absorption 
coefficient is given by Eq. {1 }, and accurate values for p, c, 
and ! must be known. Measurement of the slope, dT?dt can 
be done graphically since temperature is presumably in- 
creasing at a constant rate during a substantial interval. 

In cases where radial heat transfer cannot be ignored, 
then use of the central pulse decay' [Eq. {6}], or rate of heating 
[Eq. {12}] methods require the additional parameters k and 
/•. These are not usually difficult to determine since the ther- 
mal diffusivity of many soft tissues is close to that of water, 9 
and the ultrasonic beamwidth can be measured in the medi- 

um using the embedded thermocouple. 4 The data are no 
longer a straight line, however, and must be curve fit to Eq. 
(6} or (12} to determine the unknown value of a. While esti- 
mations of a can still be obtained graphically, it is straight- 
forward to perform a least squares error curve fit using a 
minicomputer where the temperature histories have been'di- 
gitized and stored. 

If axial heat flow is also significant, then the error func- 
tion term must be incorporated into pulse decay [Eq. {22}] or 
rate of heating [Eq. (24}] analyses. This additional complex- 
ity requires specification of the thermocouple depth Z, 
which can be determined by visual or microscopic inspection 
in transparent or incised samples; or by high resolution pulse 
echo interrogation where echoes can be obtained from the 
sample surface and the embedded thermocouple. Computa- 
tionally, erf(.} can be programmed using a polynomial ap- 
proximation valid for all positive arguments. 7 Thus, a curve 
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FIG. 7. Calculated rate of heating curves for various beamwidths. The ef- 
fects of viscous heating and axial heat flow are not incorporated into these 
calculations. These data indicate that radial heat flow may be ignored when 
an ultrasonic beamwidth of approximately 3 mm or greater is used and ob- 
servation times are limited to approximately 0.5 s. 

FIG. 8. Calculated pulse decay temperatures, including axial and radial 
heat flow, for thermojunctions at various depths in a semi-infinite medium. 
The results indicate that axial heat conduction to the coupling medium may 
be ignored when the thermojunction is at least 3 mm deep and observation 
times are limited to no more than 10 s. 

fit to determine the value of a can still be accomplished ra- 
pidly by minicomputer. One additional parameter is re- 
quired if off-axis pulse decay or rate of heating experiments 
are performed. The radial distance, r, must be known for use 
of Eqs. (5}, (13}, (23}, and (24}. Since precision positioners are 
frequently used in laboratory alignment, an accurate lateral 
displacement of a focused beam with respect to a thermo- 
junction can be readily accomplished. 

Another procedural question concerns the choice of 
rate of heating versus pulse decay approaches. Theoretically, 
these are linked by the general relations between the step 
response and impulse response of a linear system, and there- 
fore the same values are obtained from either taking the deri- 
vative of rate of heating curves, or taking the absolute tem- 
perature elevation of a pulse decay curve. There are 
important practical considerations, however. One disadvan- 
tage of the rate of heating approach is that a time-varying 
derivative must be calculated from a signal which generally 
contains noise, introducing some computational issues and 
uncertainties. However, an advantage of the rate of heating 
method is that the absolute temperature rise obtained using 
cw insonation is much greater than the absolute tempera- 
tures obtainable under identical conditions but utilizing a 
short pulse of ultrasound. This becomes important when low 
absorption and/or restricted output intensity (from avoid- 
ance of cavitation or shock thresholds, for example} result in 
a low thermocouple signal to noise ratio. 

Bounds on when radial and axial heat conduction can 

be neglected can be obtained from Eqs. (5}-(24}. 
The effects of radial heat flow on rate of heating curves 
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